Bufferfly Network BF (d)

- node set $V=\left\{(\ell, \bar{x}) \mid \bar{x} \in[2]^{d}, \ell \in[d+1]\right\}$, where $\bar{x}=x_{0} x_{1} \ldots x_{d-1}$ is a bit-string of length d
- edge set

$$
E=\left\{\left\{(\ell, \bar{x}),\left(\ell+1, \bar{x}^{\prime}\right)\right\} \mid \ell \in[d], \bar{x} \in[2]^{d}, x_{i}^{\prime}=x_{i} \text { for } i \neq \ell\right\}
$$

Sometimes the first and last level are identified.

Beneš Network

- node set $V=\left\{(\ell, \bar{x}) \mid \bar{x} \in[2]^{d}, \ell \in\{-d, \ldots, d\}\right\}$
- edge set

$$
\begin{aligned}
E= & \left\{\left\{(\ell, \bar{x}),\left(\ell+1, \bar{x}^{\prime}\right)\right\} \mid \ell \in[d], \bar{x} \in[2]^{d}, x_{i}^{\prime}=x_{i} \text { for } i \neq \ell\right\} \\
& \cup\left\{\left\{(-\ell, \bar{x}),\left(\ell-1, \bar{x}^{\prime}\right)\right\} \mid \ell \in[d], \bar{x} \in[2]^{d}, x_{i}^{\prime}=x_{i} \text { for } i \neq \ell\right\}
\end{aligned}
$$

n-ary Bufferfly Network BF (n, d)

- node set $V=\left\{(\ell, \bar{x}) \mid \bar{x} \in[n]^{d}, \ell \in[d+1]\right\}$, where $\bar{x}=x_{0} x_{1} \ldots x_{d-1}$ is a bit-string of length d
- edge set

$$
E=\left\{\left\{(\ell, \bar{x}),\left(\ell+1, \bar{x}^{\prime}\right)\right\} \mid \ell \in[d], \bar{x} \in[n]^{d}, x_{i}^{\prime}=x_{i} \text { for } i \neq \ell\right\}
$$

Permutation Network PN $(\boldsymbol{n}, \boldsymbol{d})$

- There is an n-ary version of the Benes network (2 n-ary butterflies glued at level 0).
- identifying levels 0 and 1 (or 0 and -1) gives $\operatorname{PN}(n, d)$.

The d-dimensional mesh $M(n, d)$

- node set $V=[n]^{d}$
- edge set $E=\left\{\left\{\left(x_{0}, \ldots, x_{i}, \ldots, x_{d-1}\right),\left(x_{0}, \ldots, x_{i}+1, \ldots, x_{d-1}\right)\right\} \mid\right.$ $x_{s} \in[n]$ for $\left.s \in[d] \backslash\{i\}, x_{i} \in[n-1]\right\}$

Remarks

$M(2, d)$ is also called d-dimensional hypercube.
$M(n, 1)$ is also called linear array of length n.

Permutation Routing

Lemma 1

On the linear array $M(n, 1)$ any permutation can be routed online in $2 n$ steps with buffersize 3.

Permutation Routing

Lemma 2

On the Beneš network any permutation can be routed offline in $2 d$ steps between the sources level $(+d)$ and target level $(-d)$.

Recursive Beneš Network

Permutation Routing

base case $\boldsymbol{d}=0$
trivial
induction step $\boldsymbol{d} \rightarrow \boldsymbol{d}+1$

- The packets that start at (\bar{a}, d) and $(\bar{a}(d), d)$ have to be sent into different sub-networks.
- The packets that end at $(\bar{a},-d)$ and $(\bar{a}(d),-d)$ have to come out of different sub-networks.

We can generate a graph on the set of packets.

- Every packet has an incident source edge (connecting it to the conflicting start packet)
- Every packet has an incident target edge (connecting it to the conflicting packet at its target)
- This clearly gives a bipartite graph; Coloring this graph tells us which packet to send into which sub-network.

Permutation Routing on the n-ary Beneš Network

Instead of two we have n sub-networks $B(n, d-1)$.

All packets starting at positions $\left\{\left(x_{0}, \ldots, x_{i}, \ldots, x_{d-1}, d\right) \mid x_{i} \in[n]\right\}$ have to be send to different sub-networks.

All packets ending at positions $\left\{\left(x_{0}, \ldots, x_{i}, \ldots, x_{d-1}, d\right) \mid x_{i} \in[n]\right\}$ have to come from different sub-networks.

The conflict graph is a n-uniform 2-regular hypergraph.
We can color such a graph with n colors such that no two nodes in a hyperedge share a color.

This gives the routing.

Lemma 3

On a d-dimensional mesh with sidelength n we can route any permutation (offline) in $4 d n$ steps.

We can simulate the algorithm for the n-ary Beneš Network.

Each step can be simulated by routing on disjoint linear arrays. This takes at most $2 n$ steps.

We simulate the behaviour of the Beneš network on the n-dimensional mesh.

In round $r \in\{-d, \ldots,-1,0,1, \ldots, d-1\}$ we simulate the step of sending from level r of the Beneš network to level $r+1$.

Each node $\bar{x} \in[n]^{d}$ of the mesh simulates the node (r, \bar{x}).
Hence, if in the Beneš network we send from (r, \bar{x}) to $\left(r+1, \bar{x}^{\prime}\right)$ we have to send from \bar{x} to \bar{x}^{\prime} in the mesh.

All communication is performed along linear arrays. In round $r<0$ the linear arrays along dimension $-r-1$ (recall that dimensions are numbered from 0 to $d-1$) are used

$$
\bar{x}_{d-1} \ldots \bar{x}_{-r} \alpha \bar{x}_{-r-2} \ldots \bar{x}_{0}
$$

In rounds $r \geq 0$ linear arrays along dimension r are used.
Hence, we can perform a round in $\mathcal{O}(n)$ steps.

Lemma 4

We can route any permutation on the Beneš network in $\mathcal{O}(d)$ steps with constant buffer size.

The same is true for the butterfly network.

11 Some Networks

The nodes are of the form $(\ell, \bar{x}), \bar{x} \in[n]^{d}, \ell \in-d, \ldots, d$.
We can view nodes with same first coordinate forming columns and nodes with the same second coordinate as forming rows. This gives rows of length $2 d+1$ and columns of length n^{d}.

We route in 3 phases:

1. Permute packets along the rows such that afterwards no column contains packets that have the same target row. $\mathcal{O}(d)$ steps.
2. We can use pipeling to permute every column, so that afterwards every packet is in its target row. $\mathcal{O}(2 d+2 d)$ steps.
3. Every packet is in its target row. Permute packets to their right destinations. $\mathcal{O}(d)$ steps.

Lemma 5

We can do offline permutation routing of (partial) permutations in $2 d$ steps on the hypercube.

Lemma 6

We can sort on the hypercube $M(2, d)$ in $\mathcal{O}\left(d^{2}\right)$ steps.

Lemma 7

We can do online permutation routing of permutations in $\mathcal{O}\left(d^{2}\right)$ steps on the hypercube.

Bitonic Sorter S_{d}

ASCEND/DESCEND Programs

```
Algorithm 11 ASCEND(procedure oper)
    1: for \(\operatorname{dim}=0\) to \(d-1\)
    2: \(\quad\) for all \(\bar{a} \in[2]^{d}\) pardo
    3: \(\quad \operatorname{oper}(\bar{a}, \bar{a}(\) dim \(), \operatorname{dim})\)
```

Algorithm 11 DESCEND(procedure oper)
1: for $\operatorname{dim}=d-1$ to 0
2: \quad for all $\bar{a} \in[2]^{d}$ pardo
3: $\quad \operatorname{oper}(\bar{a}, \bar{a}(\operatorname{dim}), \operatorname{dim})$
oper should only depend on the dimension and on values stored in the respective processor pair ($\bar{a}, \bar{a}(\operatorname{dim}), V[\bar{a}], V[\bar{a}(\operatorname{dim})])$.
oper should take constant time.

$$
\begin{aligned}
& \text { Algorithm } 11 \operatorname{oper}\left(a, a^{\prime}, \operatorname{dim}, T_{a}, T_{a^{\prime}}\right) \\
& \hline \text { 1: if } a_{\operatorname{dim}}, \ldots, a_{0}=0^{\operatorname{dim}+1} \text { then } \\
& \text { 2: } \quad T_{a}=\min \left\{T_{a}, T_{a^{\prime}}\right\} \\
& \hline
\end{aligned}
$$

Performing an ASCEND run with this operation computes the minimum in processor 0 .

We can sort on $M(2, d)$ by using d DESCEND runs.

We can do offline permutation routing by using a DESCEND run followed by an ASCEND run.

We can perform an ASCEND/DESCEND run on a linear array $M\left(2^{d}, 1\right)$ in $\mathcal{O}\left(2^{d}\right)$ steps.

The CCC network is obtained from a hypercube by replacing every node by a cycle of degree d.

- $\operatorname{nodes}\left\{(\ell, \bar{x}) \mid \bar{x} \in[2]^{d}, \ell \in[d]\right\}$
- $\operatorname{edges}\left\{\left\{(\ell, \bar{x}),(\ell, \bar{x}(\ell)\} \mid x \in[2]^{d}, \ell \in[d]\right\}\right.$

constand degree

Lemma 8

Let $d=2^{k}$. An ASCEND run of a hypercube $M(2, d+k)$ can be simulated on $\operatorname{CCC}(d)$ in $\mathcal{O}(d)$ steps.

The shuffle exchange network $\operatorname{SE}(d)$ is defined as follows

- nodes: $V=[2]^{d}$
- edges:

$$
E=\left\{\{x \bar{\alpha}, \bar{\alpha} x\} \mid x \in[2], \bar{\alpha} \in[2]^{d-1}\right\} \cup\left\{\{\bar{\alpha} 0, \bar{\alpha} 1\} \mid \bar{\alpha} \in[2]^{d-1}\right\}
$$

constand degree

Edges of the first type are called shuffle edges. Edges of the second type are called exchange edges

Shuffle Exchange Networks

11 Some Networks

Lemma 9

We can perform an ASCEND run of $M(2, d)$ on $\operatorname{SE}(d)$ in $\mathcal{O}(d)$ steps.

Simulations between Networks

For the following observations we need to make the definition of parallel computer networks more precise.

Each node of a given network corresponds to a processor/RAM.
In addition each processor has a read register and a write register.

In one (synchronous) step each neighbour of a processor P_{i} can write into P_{i} 's write register or can read from P_{i} 's read register.

Usually we assume that proper care has to be taken to avoid concurrent reads and concurrent writes from/to the same register.

Simulations between Networks

Definition 10

A configuration C_{i} of processor P_{i} is the complete description of the state of P_{i} including local memory, program counter, read-register, write-register, etc.

Suppose a machine M is in configuration (C_{0}, \ldots, C_{p-1}), performs t synchronous steps, and is then in configuration $C=\left(C_{0}^{\prime}, \ldots, C_{p-1}^{\prime}\right)$.
C_{i}^{\prime} is called the t-th successor configuration of C for processor i.

Simulations between Networks

Definition 11

Let $C=\left(C_{0}, \ldots, C_{p-1}\right)$ a configuration of M. A machine M^{\prime} with $q \geq p$ processors weakly simulates t steps of M with slowdown k if

- in the beginning there are p non-empty processors sets $A_{0}, \ldots, A_{p-1} \subseteq M^{\prime}$ so that all processors in A_{i} know C_{i};
- after at most $k \cdot t$ steps of M^{\prime} there is a processor $Q^{(i)}$ that knows the t-th successors configuration of C for processor P_{i}.

Simulations between Networks

Definition 12

M^{\prime} simulates M with slowdown k if

- M^{\prime} weakly simulates machine M with slowdown k
- and every processor in A_{i} knows the t-th successor configuration of C for processor P_{i}.

We have seen how to simulate an ASCEND/DESCEND run of the hypercube $M(2, d+k)$ on $\operatorname{CCC}(d)$ with $d=2^{k}$ in $\mathcal{O}(d)$ steps.

Hence, we can simulate $d+k$ steps (one ASCEND run) of the hypercube in $\mathcal{O}(d)$ steps. This means slowdown $\mathcal{O}(1)$.

Lemma 13

Suppose a network S with n processors can route any permutation in time $\mathcal{O}(t(n))$. Then S can simulate any constant degree network M with at most n vertices with slowdown $\mathcal{O}(t(n))$.

Map the vertices of M to vertices of S in an arbitrary way.
Color the edges of M with $\Delta+1$ colors, where $\Delta=\mathcal{O}(1)$ denotes the maximum degree.

Each color gives rise to a permutation.
We can route this permutation in S in $t(n)$ steps.
Hence, we can perform the required communication for one step of M by routing $\Delta+1$ permutations in S. This takes time $t(n)$.

A processor of M is simulated by the same processor of S throughout the simulation.

Lemma 14

Suppose a network S with n processors can sort n numbers in time $\mathcal{O}(t(n))$. Then S can simulate any network M with at most n vertices with slowdown $\mathcal{O}(t(n))$.

Lemma 15

There is a constant degree network on $\mathcal{O}\left(n^{1+\epsilon}\right)$ nodes that can simulate any constant degree network with slowdown $\mathcal{O}(1)$.

Suppose we allow concurrent reads, this means in every step all neighbours of a processor P_{i} can read P_{i} 's read register.

Lemma 16

A constant degree network M that can simulate any n-node network has slowdown $\mathcal{O}(\log n)$ (independent of the size of M).

We show the lemma for the following type of simulation.

- There are representative sets A_{i}^{t} for every step t that specify which processors of M simulate processor P_{i} in step t (know the configuration of P_{i} after the t-th step).
- The representative sets for different processors are disjoint.
- for all $i \in\{1, \ldots, n\}$ and steps $t, A_{i}^{t} \neq \emptyset$.

This is a step-by-step simulation.

Suppose processor P_{i} reads from processor $P_{j_{i}}$ in step t.
Every processor $Q \in M$ with $Q \in A_{i}^{t+1}$ must have a path to a processor $Q^{\prime} \in A_{i}^{t}$ and to $Q^{\prime \prime} \in A_{j_{i}}^{t}$.

Let k_{t} be the largest distance (maximized over all i, j_{i}).
Then the simulation of step t takes time at least k_{t}.
The slowdown is at least

$$
k=\frac{1}{\ell} \sum_{t=1}^{\ell} k_{t}
$$

We show

- The simulation of a step takes at least time $\gamma \log n$, or
- the size of the representative sets shrinks by a lot

$$
\sum_{i}\left|A_{i}^{t+1}\right| \leq \frac{1}{n^{\epsilon}} \sum_{i}\left|A_{i}^{t}\right|
$$

Suppose there is no pair (i, j) such that i reading from j requires time $\gamma \log n$.

- For every i the set $\Gamma_{2 k}\left(A_{i}\right)$ contains a node from A_{j}.
- Hence, there must exist a j_{i} such that $\Gamma_{2 k}\left(A_{i}\right)$ contains at most

$$
\left|C_{j_{i}}\right|:=\frac{\left|A_{i}\right| \cdot c^{2 k}}{n-1} \leq \frac{\left|A_{i}\right| \cdot c^{3 k}}{n}
$$

processors from $\left|A_{j_{i}}\right|$

If we choose that i reads from j_{i} we get

$$
\begin{aligned}
\left|A_{i}^{\prime}\right| & \leq\left|C_{j_{i}}\right| \cdot c^{k} \\
& \leq c^{k} \cdot \frac{\left|A_{i}\right| \cdot c^{3 k}}{n} \\
& =\frac{1}{n}\left|A_{i}\right| \cdot c^{4 k}
\end{aligned}
$$

Choosing $k=\Theta(\log n)$ gives that this is at most $\left|A_{i}\right| / n^{\epsilon}$.

Let ℓ be the total number of steps and s be the number of short steps when $k_{t}<\gamma \log n$.

In a step of time k_{t} a representative set can at most increase by $c^{k_{t}+1}$.

Let h_{ℓ} denote the number of representatives after step ℓ.

$$
n \leq h_{\ell} \leq h_{0}\left(\frac{1}{n^{\epsilon}}\right)^{s} \prod_{t \in \text { long }} c^{k_{t}+1} \leq \frac{n}{n^{\epsilon s}} \cdot c^{\ell+\sum_{t} k_{t}}
$$

If $\sum_{t} k_{t} \geq \ell\left(\frac{\epsilon}{2} \log _{c} n-1\right)$, we are done. Otw.

$$
n \leq n^{1-\epsilon s+\ell \frac{\epsilon}{2}}
$$

This gives $s \leq \ell / 2$.
Hence, at most 50% of the steps are short.

Deterministic Online Routing

Lemma 17

A permutation on an $n \times n$-mesh can be routed online in $\mathcal{O}(n)$ steps.

Deterministic Online Routing

Definition 18 (Oblivious Routing)
Specify a path-system \mathcal{W} with a path $P_{u, v}$ between u and v for every pair $\{u, v\} \in V \times V$.

A packet with source u and destination v moves along path $P_{u, v}$.

Deterministic Online Routing

Definition 19 (Oblivious Routing)

Specify a path-system \mathcal{W} with a path $P_{u, v}$ between u and v for every pair $\{u, v\} \in V \times V$.

Definition 20 (node congestion)

For a given path-system the node congestion is the maximum number of path that go through any node $v \in V$.

Definition 21 (edge congestion)

For a given path-system the edge congestion is the maximum number of path that go through any edge $e \in E$.

Deterministic Online Routing

Definition 22 (dilation)

For a given path system the dilation is the maximum length of a path.

Lemma 23

Any oblivious routing protocol requires at least $\max \left\{C_{f}, D_{f}\right\}$ steps, where C_{f} and D_{f}, are the congestion and dilation, respectively, of the path-system used. (node congestion or edge congestion depending on the communication model)

Lemma 24
Any reasonable oblivious routing protocol requires at most $\mathcal{O}\left(D_{f} \cdot C_{f}\right)$ steps (unbounded buffers).

Theorem 25 (Borodin, Hopcroft)

For any path system \mathcal{W} there exists a permutation $\pi: V \rightarrow V$ and an edge $e \in E$ such that at least $\Omega(\sqrt{n} / \Delta)$ of the paths go through e.

Let $\mathcal{W}_{v}=\left\{P_{v, u} \mid u \in V\right\}$.
We say that an edge e is z-popular for v if at least z paths from \mathcal{W}_{v} contain e.

For any node v there are many edges that are are quite popular for v.
$|V| \times|E|$-matrix $A(z)$:

$$
A_{v, e}(z)= \begin{cases}1 & e \text { is } z \text {-popular for } v \\ 0 & \text { otherwise }\end{cases}
$$

Define

$$
\begin{aligned}
& A_{v}(z)=\sum_{e} A_{v, e}(z) \\
& A_{e}(z)=\sum_{v} A_{v, e}(z)
\end{aligned}
$$

Lemma 26

Let $z \leq \frac{n-1}{\Delta}$.
For every node $v \in V$ there exist at least $\frac{n}{2 \Delta z}$ edges that are z popular for v. This means

$$
A_{v}(z) \geq \frac{n}{2 \Delta z}
$$

Lemma 27

There exists an edge e^{\prime} that is z-popular for at least z nodes with $z=\Omega(\sqrt{n} \Delta)$.

$$
\sum_{e} A_{e}(z)=\sum_{v} A_{v}(z) \geq \frac{n^{2}}{2 \Delta z}
$$

There must exist an edge e^{\prime}

$$
A_{e^{\prime}}(z) \geq\left\lceil\frac{n^{2}}{|E| \cdot 2 \Delta z}\right\rceil \geq\left\lceil\frac{n}{2 \Delta^{2} z}\right\rceil
$$

where the last step follows from $|E| \leq \Delta n$.

We choose z such that $z=\frac{n}{2 \Delta^{2} z}$ (i.e., $\left.z=\sqrt{n} /(\sqrt{2} \Delta)\right)$.
This means e^{\prime} is $\lceil z\rceil$-popular for $\lceil z\rceil$ nodes.
We can construct a permutation such that z paths go through e^{\prime}.

Deterministic oblivious routing may perform very poorly.
What happens if we have a random routing problem in a butterfly?

Suppose every source on level 0 has p packets, that are routed to random destinations.

How many packets go over node v on level i ?
From v we can reach $2^{d} / 2^{i}$ different targets.

Hence,

$$
\operatorname{Pr}[\text { packet goes over } v] \leq \frac{2^{d-i}}{2^{d}}=\frac{1}{2^{i}}
$$

Expected number of packets:

$$
\mathrm{E}[\text { packets over } v]=p \cdot 2^{i} \cdot \frac{1}{2^{i}}=p
$$

since only $p 2^{i}$ packets can reach v.
But this is trivial.

What is the probability that at least r packets go through v.

$$
\begin{aligned}
\operatorname{Pr}[\text { at least } r \text { path through } v] & \leq\binom{ p \cdot 2^{i}}{r} \cdot\left(\frac{1}{2^{i}}\right)^{r} \\
& \leq\left(\frac{p 2^{i} \cdot e}{r}\right)^{r} \cdot\left(\frac{1}{2^{i}}\right) \\
& =\left(\frac{p e}{r}\right)^{r}
\end{aligned}
$$

$\operatorname{Pr}[$ there exists a node v sucht that at least r path through v]

$$
\leq d 2^{d} \cdot\left(\frac{p e}{r}\right)^{r}
$$

$\operatorname{Pr}[$ there exists a node v sucht that at least r path through v]

$$
\leq d 2^{d} \cdot\left(\frac{p e}{r}\right)^{r}
$$

Choose r as $2 e p+(\ell+1) d+\log d=\mathcal{O}(p+\log N)$, where N is number of sources in $\mathrm{BF}(d)$.
$\operatorname{Pr}[$ exists node v with more than r paths over $v] \leq \frac{1}{N^{\ell}}$

Scheduling Packets

Assume that in every round a node may forward at most one packet but may receive up to two.

We select a random rank $R_{p} \in[k]$. Whenever, we forward a packet we choose the packet with smaller rank. Ties are broken according to packet id.

Random Rank Protocol

Definition 28 (Delay Sequence of length s)

- delay path \mathcal{W}
- lengths $\ell_{0}, \ell_{1}, \ldots, \ell_{s}$, with $\ell_{0} \geq 1, \ell_{1}, \ldots, \ell_{s} \geq 0$ lengths of delay-free sub-paths
- collision nodes $v_{0}, v_{1}, \ldots, v_{s}, v_{s+1}$
- collision packets P_{0}, \ldots, P_{s}

Properties

- $\operatorname{rank}\left(P_{0}\right) \geq \operatorname{rank}\left(P_{1}\right) \geq \cdots \geq \operatorname{rank}\left(P_{s}\right)$
- $\sum_{i=0}^{s} \ell_{i}=d$
- if the routing takes $d+s$ steps than the delay sequence has length s

Definition 29 (Formal Delay Sequence)

- a path \mathcal{W} of length d from a source to a target
- s integers $\ell_{0} \geq 1, \ell_{1}, \ldots, \ell_{s} \geq 0$ and $\sum_{i=0}^{s} \ell_{i}=d$
- nodes $v_{0}, \ldots v_{s}, v_{s+1}$ on \mathcal{W} with v_{i} being on level $d-\ell_{0}-\cdots-\ell_{i-1}$
- $s+1$ packets P_{0}, \ldots, P_{s}, where P_{i} is a packet with path through v_{i} and v_{i-1}
- numbers $R_{s} \leq R_{s-1} \leq \cdots \leq R_{0}$

We say a formal delay sequence is active if $\operatorname{rank}\left(P_{i}\right)=k_{i}$ holds for all i.

Let N_{s} be the number of formal delay sequences of length at most s. Then
$\operatorname{Pr}[$ routing needs at least $d+s$ steps $] \leq \frac{N_{s}}{k^{s+1}}$

Lemma 30

$$
N_{s} \leq\left(\frac{2 e C(s+k)}{s+1}\right)^{s+1}
$$

- there are N^{2} ways to choose \mathcal{W}
- there are $\binom{s+d-1}{s}$ ways to choose ℓ_{i} 's with $\sum_{i=0}^{s} \ell_{i}=d$
- the collision nodes are fixed
- there are at most C^{s+1} ways to choose the collision packets where C is the node congestion
- there are at most $\binom{s+k}{s+1}$ ways to choose $0 \leq k_{s} \leq \cdots \leq k_{0}<k$

Hence the probability that the routing takes more than $d+s$ steps is at most

$$
N^{3} \cdot\left(\frac{2 e \cdot C \cdot(s+k)}{(s+1) k}\right)^{s+1}
$$

We choose $s=8 e C-1+(\ell+3) d$ and $k=s+1$. This gives that the probability is at most $\frac{1}{N^{t}}$.

- With probability $1-\frac{1}{N^{\ell_{1}}}$ the random routing problem has congestion at most $\mathcal{O}\left(p+\ell_{1} d\right)$.
- With probability $1-\frac{1}{N^{\ell_{2}}}$ the packet scheduling finishes in at most $\mathcal{O}\left(C+\ell_{2} d\right)$ steps.

Hence, with high probability routing random problems with p packets per source in a butterfly requires only $\mathcal{O}(p+d)$ steps.

What do we do for arbitrary routing problems?

Valiants Trick

Where did the scheduling analysis use the butterfly?
We only used

- all routing paths are of the same length d
- there are a polynomial number of delay paths

Choose paths as follows:

- route from source to random destination on target level
- route to real target column (albeit on source level)
- route to target

All phases run in time $\mathcal{O}(p+d)$ with high probability.

Valiants Trick

Multicommodity Flow Problem

- undirected (weighted) graph $G=(V, E, c)$
- commodities $\left(s_{i}, t_{i}\right), i \in\{1, \ldots, k\}$
- a multicommodity flow is a flow $f: E \times\{1, \ldots, k\} \rightarrow \mathbb{R}^{+}$
- for all edges $e \in E: \sum_{i} f_{i}(e) \leq c(e)$
- for all nodes $v \in V \backslash\left\{s_{i}, t_{i}\right\}$:

$$
\sum_{u:(u, v) \in E} f_{i}((u, v))=\sum_{w:(v, w) \in E} f_{i}((v, w))
$$

Goal A (Maximum Multicommodity Flow) maximize $\sum_{i} \sum_{e=\left(s_{i}, x\right) \in E} f_{i}(e)$

Goal B (Maximum Concurrent Multicommodity Flow) maximize $\min _{i} \sum_{e=\left(s_{i}, x\right) \in E} f_{i}(e) / d_{i}$ (throughput fraction), where d_{i} is demand for commodity i

Valiants Trick

A Balanced Multicommodity Flow Problem is a concurrent multicommodity flow problem in which incoming and outgoing flow is equal to

$$
c(v)=\sum_{e=(v, x) \in E} c(e)
$$

Valiants Trick

For a multicommodity flow S we assume that we have a decomposition of the flow(s) into flow-paths.

We use $C(S)$ to denote the congestion of the flow problem (inverse of througput fraction), and $D(S)$ the length of the longest routing path.

For a network $G=(V, E, c)$ we define the characteristic flow problem via

- demands $d_{u, v}=\frac{c(u) c(v)}{c(V)}$

Suppose the characteristic flow problem has a solution S with $C(S) \leq F$ and $D(S) \leq F$.

Definition 31

A (randomized) oblivious routing scheme is given by a path system \mathcal{P} and a weight function w such that

$$
\sum_{p \in \mathcal{P}_{s, t}} w(p)=1
$$

Construct an oblivious routing scheme from S as follows:

- let $f_{x, y}$ be the flow between x and y in S

$$
f_{x, y} \geq d_{x, y} / C(S) \geq d_{x, y} / F=\frac{1}{F} \frac{c(x) c(y)}{c(V)}
$$

- for $p \in \mathcal{P}_{x, y}$ set $w(p)=f_{p} / f_{x, y}$
gives an oblivious routing scheme.

Valiants Trick

We apply this routing scheme twice:

- first choose a path from $\mathcal{P}_{s, v}$, where v is chosen uniformly according to $c(v) / c(V)$
- then choose path according to $\mathcal{P}_{v, t}$

If the input flow problem/packet routing problem is balanced doing this randomization results in flow solution S (twice).

Hence, we have an oblivious scheme with congestion and dilation at most $2 F$ for (balanced inputs).

Example: hypercube.

Oblivious Routing for the Mesh

We can route any permutation on an $n \times n$ mesh in $\mathcal{O}(n)$ steps, by $x-y$ routing. Actually $\mathcal{O}(d)$ steps where d is the largest distance between a source-target pair.

What happens if we do not have a permutation?
$x-y$ routing may generate large congestion if some pairs have a lot of packets.

Valiants trick may create a large dilation.

Let for a multicommodity flow problem $P C_{\text {opt }}(P)$ be the optimum congestion, and $D_{\text {opt }}(P)$ be the optimum dilation (by perhaps different flow solutions).

Lemma 32

There is an oblivious routing scheme for the mesh that obtains a flow solution S with $C(S)=\mathcal{O}\left(C_{\mathrm{opt}}(P) \log n\right)$ and $D(S)=\mathcal{O}\left(D_{\text {opt }}(P)\right)$.

Lemma 33

For any oblivious routing scheme on the mesh there is a demand P such that routing P will give congestion $\Omega\left(\log n \cdot C_{\text {opt }}\right)$.

