Definition 1

A 0-1 sequence S is bitonic if it can be written as the concatenation of subsequences S_{1} and S_{2} such that either

- S_{1} is monotonically increasing and S_{2} monotonically decreasing, or
- S_{1} is monotonically decreasing and S_{2} monotonically increasing.

Note, that this just defines bitonic 0-1 sequences. Bitonic sequences are defined differently.

Bitonic Merger

Bitonic Merger $\boldsymbol{B}_{\boldsymbol{d}}$

The bitonic merger B_{d} of dimension d is constructed by combining two bitonic mergers of dimension $d-1$.

If we feed a bitonic $0-1$ sequence into this, the sequence will be sorted
(actually, any bitonic sequence will be sorted but we do not prove this)

Bitonic Merger

If we feed a bitonic $0-1$ sequence S into the network on the right we obtain two bitonic sequences S_{T} and S_{B} s.t.

1. $S_{B} \leq S_{T}$ (element-wise)
2. S_{B} and S_{T} are bitonic

Proof:

- assume wlog. S more 1's than 0's.
- assume for contradiction two 0 s at same comparator ($i, j=i+2^{d}$)
- everything 0 btw i and j means we have more than 50% zeros ($($) .
- all 1 s btw. i and j means we have less than 50% ones (\langle).
- 1 btw. i and j and elsewhere means S is not bitonic ($(<)$.

Bitonic Sorter S_{d}

Bitonic Merger: $\left(\boldsymbol{n}=\mathbf{2}^{\boldsymbol{d}}\right.$)

- comparators: $C(n)=2 C(n / 2)+n / 2 \Rightarrow C(n)=\mathcal{O}(n \log n)$.
- depth: $D(n)=D(n / 2)+1 \Rightarrow D(d)=\mathcal{O}(\log n)$.

Bitonic Sorter: $\left(n=2^{d}\right)$

- comparators: $C(n)=2 C(n / 2)+\mathcal{O}(n \log n) \Rightarrow$
$C(n)=\mathcal{O}\left(n \log ^{2} n\right)$.
- depth: $D(n)=D(n / 2)+\log n \Rightarrow D(n)=\Theta\left(\log ^{2} n\right)$.

Odd-Even Merge

How to merge two sorted sequences?
$A=\left(a_{1}, a_{2}, \ldots, a_{n}\right), B=\left(b_{1}, b_{2}, \ldots, b_{n}\right), n$ even.
Split into odd and even sequences:
$A_{\text {odd }}=\left(a_{1}, a_{3}, a_{5}, \ldots, a_{n-1}\right), A_{\text {even }}=\left(a_{2}, a_{4}, a_{6}, \ldots a_{n}\right)$
$B_{\text {odd }}=\left(b_{1}, b_{3}, b_{5}, \ldots, b_{n-1}\right), B_{\text {even }}=\left(b_{2}, b_{4}, b_{6}, \ldots, b_{n}\right)$

Let

$$
X=\operatorname{merge}\left(A_{\text {odd }}, B_{\text {odd }}\right) \text { and } Y=\operatorname{merge}\left(A_{\text {even }}, B_{\text {even }}\right)
$$

Then

$$
S=\left(x_{1}, \min \left\{x_{2}, y_{1}\right\}, \max \left\{x_{2}, y_{1}\right\}, \min \left\{x_{3}, y_{2}\right\}, \ldots, y_{n}\right)
$$

Odd-Even Merge

Theorem 2
There exists a sorting network with depth $\mathcal{O}(\log n)$ and $\mathcal{O}(n \log n)$ comparators.

