
Tree Algorithms

Euler Circuits

Every node \boldsymbol{v} fixes an arbitrary ordering among its adjacent nodes:

$$u_0, u_1, \ldots, u_{d-1}$$

We obtain an Euler tour by setting

$$\operatorname{succ}((u_i, v)) = (v, u_{(i+1) \bmod d})$$

PA © Harald Räcke

6 Tree Algorithms

Euler Circuits

Lemma 1

An Euler circuit can be computed in constant time $\mathcal{O}(1)$ with $\mathcal{O}(n)$ operations.

Euler Circuits — Applications

Rooting a tree

- ightharpoonup split the Euler tour at node r
- ▶ this gives a list on the set of directed edges (Euler path)
- ▶ assign x[e] = 1 for every edge;
- perform parallel prefix; let $s[\cdot]$ be the result array
- if s[(u, v)] < s[(v, u)] then u is parent of v;

Euler Circuits — Applications

Postorder Numbering

- ightharpoonup split the Euler tour at node r
- ▶ this gives a list on the set of directed edges (Euler path)
- ▶ assign x[e] = 1 for every edge (v, parent(v))
- ▶ assign x[e] = 0 for every edge (parent(v), v)
- perform parallel prefix
- ightharpoonup post(v) = s[(v, parent(v))]; post(r) = n

PA © Harald Räcke

6 Tree Algorithms

0.4

Euler Circuits — Applications

Number of descendants

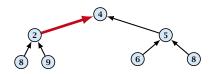
- ightharpoonup split the Euler tour at node r
- this gives a list on the set of directed edges (Euler path)
- assign x[e] = 0 for every edge (parent(v), v)
- ▶ assign x[e] = 1 for every edge $(v, parent(v)), v \neq r$
- perform parallel prefix
- ightharpoonup size(v) = s[(v, parent(v))] s[(parent(v), v)]

Euler Circuits — Applications

Level of nodes

- ightharpoonup split the Euler tour at node r
- this gives a list on the set of directed edges (Euler path)
- ▶ assign x[e] = -1 for every edge (v, parent(v))
- assign x[e] = 1 for every edge (parent(v), v)
- perform parallel prefix
- level(v) = s[(parent(v), v)]; level(r) = 0

PA © Harald Räcke 6 Tree Algorithms


0.5

Rake Operation

Given a binary tree T.

Given a leaf $u \in T$ with $p(u) \neq r$ the rake-operation does the following

- ightharpoonup remove u and p(u)
- attach sibling of u to p(p(u))

6 Tree Algorithms

We want to apply rake operations to a binary tree T until T just consists of the root with two children.

Possible Problems:

- 1. we could concurrently apply the rake-operation to two siblings
- 2. we could concurrently apply the rake-operation to two leaves u and v such that p(u) and p(v) are connected

By choosing leaves carefully we ensure that none of the above cases occurs

PA © Harald Räcke

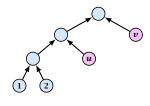
6 Tree Algorithms

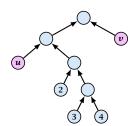
100

Observations

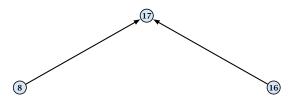
- ▶ the rake operation does not change the order of leaves
- two leaves that are siblings do not perform a rake operation in the same round because one is even and one odd at the start of the round
- two leaves that have adjacent parents either have different parity (even/odd) or they differ in the type of child (left/right)

Algorithm:


- label leaves consecutively from left to right (excluding left-most and right-most leaf), and store them in an array A
- for $\lceil \log(n+1) \rceil$ iterations
 - apply rake to all odd leaves that are left children
 - apply rake operation to remaining odd leaves (odd at start of round!!!)
 - A=even leaves


PA © Harald Räcke

6 Tree Algorithms


Cases, when the left edge btw. p(u) and p(v) is a left-child edge.

6 Tree Algorithms

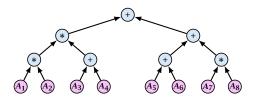
Example

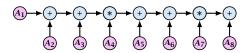
PA © Harald Räcke 6 Tree Algorithms

102

104

- one iteration can be performed in constant time with $\mathcal{O}(|A|)$ processors, where A is the array of leaves;
- ▶ hence, **all** iterations can be performed in $O(\log n)$ time and O(n) work;
- ▶ the intial parallel prefix also requires time $O(\log n)$ and work O(n)


PA © Harald Räcke


6 Tree Algorithms

103

Evaluating Expressions

Suppose that we want to evaluate an expression tree, containing additions and multiplications.

If the tree is not balanced this may be time-consuming.

We can use the rake-operation to do this quickly.

Applying the rake-operation changes the tree.

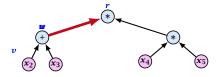
In order to maintain the value we introduce parameters a_{ν} and b_{ν} for every node that still allows to compute the value of a node based on the value of its children.

Invariant:

Let u be internal node with children v and w. Then

$$val(u) = (a_v \cdot val(v) + b_v) \otimes (a_w \cdot val(w) + b_w)$$

where $\otimes \in \{*, +\}$ is the operation at node u.


Initially, we can choose $a_v = 1$ and $b_v = 0$ for every node.

6 Tree Algorithms

ПППРА

6 Tree Algorithms

Rake Operation

Currently the value at u is

$$val(u) = (a_v \cdot val(v) + b_v) + (a_w \cdot val(w) + b_w)$$
$$= x_1 + (a_w \cdot val(w) + b_w)$$

In the expression for r this goes in as

$$a_{u} \cdot [x_{1} + (a_{w} \cdot \operatorname{val}(w) + b_{w})] + b_{u}$$

$$= \underbrace{a_{u}a_{w}}_{a'_{w}} \cdot \operatorname{val}(w) + \underbrace{a_{u}x_{1} + a_{u}b_{w} + b_{u}}_{b'_{w}}$$

PA © Harald Räcke 6 Tree Algorithms

106

Lemma 3

We compute tree functions for arbitrary trees in time $\mathcal{O}(\log n)$ and a linear number of operations.

6 Tree Algorithms

proof on board...

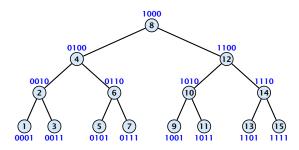
If we change the a and b-values during a rake-operation according to the previous slide we can calculate the value of the root in the end.

Lemma 2

We can evaluate an arithmetic expression tree in time $O(\log n)$ and work O(n) regardless of the height or depth of the tree.

By performing the rake-operation in the reverse order we can also compute the value at each node in the tree.

PA © Harald Räcke


6 Tree Algorithms

107

In the LCA (least common ancestor) problem we are given a tree and the goal is to design a data-structure that answers LCA-queries in constant time.

Least Common Ancestor

LCAs on complete binary trees (inorder numbering):

The least common ancestor of u and v is

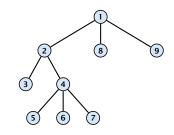
$$z_1 z_2 \dots z_i 10 \dots 0$$

where z_{i+1} is the first bit-position in which u and v differ.

PA © Harald Räcke

6 Tree Algorithms

110


112

 $\ell(v)$ is index of first appearance of v in node-sequence.

r(v) is index of last appearance of v in node-squence.

 $\ell(v)$ and r(v) can be computed in constant time, given the node- and level-sequence.

Least Common Ancestor

nodes

levels

0 1 2 1 2 3 2 3 2 3 2 1 0 1 0 1 0 1

PA © Harald Räcke

6 Tree Algorithms

111

Least Common Ancestor

Lemma 4

- **1.** u is ancestor of v iff $\ell(u) < \ell(v) < r(u)$
- **2.** u and v are not related iff either $r(u) < \ell(v)$ or $\ell(u) < r(v)$
- **3.** suppose $r(u) < \ell(v)$ then LCA(u, v) is vertex with minimum level over interval $[r(u), \ell(v)]$.

Range Minima Problem

Given an array A[1...n], a range minimum query (ℓ,r) consists of a left index $\ell \in \{1, ..., n\}$ and a right index $r \in \{1, ..., n\}$.

The answer has to return the index of the minimum element in the subsequence $A[\ell \dots r]$.

The goal in the range minima problem is to preprocess the array such that range minima queries can be answered quickly (constant time).

PA © Harald Räcke

6 Tree Algorithms

114

116

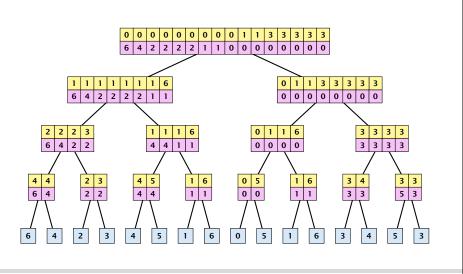
Observation

Given an algorithm for solving the range minima problem in time T(n) and work W(n) we can obtain an algorithm that solves the LCA-problem in time $\mathcal{O}(T(n) + \log n)$ and work $\mathcal{O}(n + W(n))$.

Remark

In the sequential setting the LCA-problem and the range minima problem are equivalent. This is not necessarily true in the parallel setting.

For solving the LCA-problem it is sufficient to solve the restricted range minima problem where two successive elements in the array just differ by +1 or -1.


PA © Harald Räcke

6 Tree Algorithms

115

Prefix and Suffix Minima

Tree with prefix-minima and suffix-minima:

6 Tree Algorithms

- Suppose we have an array A of length $n = 2^k$
- ▶ We compute a complete binary tree *T* with *n* leaves.
- ▶ Each internal node corresponds to a subsequence of A. It contains an array with the prefix and suffix minima of this subsequence.

Given the tree T we can answer a range minimum query (ℓ, r) in constant time.

- we can determine the LCA x of ℓ and r in constant time since T is a complete binary tree
- lacktriangle Then we consider the suffix minimum of ℓ in the left child of x and the prefix minimum of r in the right child of x.
- The minimum of these two values is the result.

Lemma 5

We can solve the range minima problem in time $O(\log n)$ and work $\mathcal{O}(n \log n)$.

PA © Harald Räcke

6 Tree Algorithms

118

Answering a query (ℓ, r) :

- ightharpoonup if ℓ and r are from the same block the data-structure for this block gives us the result in constant time
- ightharpoonup if ℓ and r are from different blocks the result is a minimum of three elements:
 - ullet the suffix minmum of entry ℓ in ℓ 's block
 - the minimum among $x_{\ell+1},\ldots,x_{r-1}$
 - the prefix minimum of entry r in r's block

Reducing the Work

Partition A into blocks B_i of length $\log n$

Preprocess each B_i block separately by a sequential algorithm so that range-minima queries within the block can be answered in constant time. (how?)

For each block B_i compute the minimum x_i and its prefix and suffix minima.

Use the previous algorithm on the array $(x_1, \dots, x_{n/\log n})$.

PA © Harald Räcke

6 Tree Algorithms