4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence $x_{0}<x_{1}<x_{2}<\cdots<x_{k}$ of elements. We want to insert elements x_{1}, \ldots, x_{k} into the tree $(k<n)$.

4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence $x_{0}<x_{1}<x_{2}<\cdots<x_{k}$ of elements. We want to insert elements x_{1}, \ldots, x_{k} into the tree $(k \ll n)$. time: $\mathcal{O}(\log n) ;$ work: $\mathcal{O}(k \log n)$

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM all x_{i} 's that have to be inserted before the same element form a chain

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM
all x_{i} 's that have to be inserted before the same element form a chain
2. determine the largest/smallest/middle element of every chain time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM
all x_{i} 's that have to be inserted before the same element form a chain
2. determine the largest/smallest/middle element of every chain
time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;
3. insert the middle element of every chain compute new chains
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}\left(k_{i} \log n\right)$; $k_{i}=$ \#inserted elements (computing new chains is constant time)

4.5 Inserting into a (2, 3)-tree

1. determine for every x_{i} the leaf element before which it has to be inserted time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM all x_{i} 's that have to be inserted before the same element form a chain
2. determine the largest/smallest/middle element of every chain
time: $\mathcal{O}(1)$; work: $\mathcal{O}(k)$;
3. insert the middle element of every chain compute new chains
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}\left(k_{i} \log n\right) ; k_{i}=$ \#inserted elements (computing new chains is constant time)
4. repeat Step 3 for logarithmically many rounds time: $\mathcal{O}(\log n \log k)$; work: $\mathcal{O}(k \log n)$;

Step 3

- each internal node is split into at most two parts

Step 3

- each internal node is split into at most two parts
- each split operation promotes at most one element

Step 3

- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer

Step 3

- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer
- we can use the same routine for every level

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation
We can start with phase i of round r as long as phase i of round $r-1$ and (of course), phase $i-1$ of round r has finished.

4.5 Inserting into a (2, 3)-tree

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round $r-1$ and (of course), phase $i-1$ of round r has finished.

This is called Pipelining. Using this technique we can perform all rounds in Step 4 in just $\mathcal{O}(\log k+\log n)$ many parallel steps.

