Input: a linked list given by successor pointers; a value x[i] for every list element; an operator *;

Output: for every list position ℓ the sum (w.r.t. *) of elements after ℓ in the list (including ℓ)

4.2 Parallel Prefix

	Alg	orithm 7 ParallelPrefix
	1:	for $1 \le i \le n$ pardo
	2:	$P[i] \leftarrow S[i]$
	3:	while $S[i] \neq S[S[i]]$ do
	4:	$x[i] \leftarrow x[i] * x[S[i]]$
	5:	$S[i] \leftarrow S[S[i]]$
	6:	if $P[i] \neq i$ then $S[i] \leftarrow x[S(i)]$
I		

The algorithm runs in time $O(\log n)$.

It has work requirement $O(n \log n)$. non-optimal

This technique is also known as pointer jumping

4.2 Parallel Prefix

Algorithm 7 ParallelPrefix		
1: for $1 \le i \le n$ pardo		
2: $P[i] \leftarrow S[i]$		
3: while $S[i] \neq S[S[i]]$ do		
4: $x[i] \leftarrow x[i] * x[S[i]]$		
5: $S[i] \leftarrow S[S[i]]$		
6: if $P[i] \neq i$ then $S[i] \leftarrow x[S(i)]$]	

The algorithm runs in time $O(\log n)$.

It has work requirement $O(n \log n)$. non-optimal

This technique is also known as pointer jumping

4.2 Parallel Prefix

Algorithm 7 ParallelPrefix		
1: for $1 \le i \le n$ pardo		
2: $P[i] \leftarrow S[i]$		
3: while $S[i] \neq S[S[i]]$ do		
4: $x[i] \leftarrow x[i] * x[S[i]]$		
5: $S[i] \leftarrow S[S[i]]$		
6: if $P[i] \neq i$ then $S[i] \leftarrow x[S(i)]$]	

The algorithm runs in time $O(\log n)$.

It has work requirement $\mathcal{O}(n \log n)$. non-optimal

This technique is also known as pointer jumping

Algorithm 7 ParallelPrefix		
1: for $1 \le i \le n$ pardo		
2: $P[i] \leftarrow S[i]$		
3: while $S[i] \neq S[S[i]]$ do		
4: $x[i] \leftarrow x[i] * x[S[i]]$		
5: $S[i] \leftarrow S[S[i]]$		
6: if $P[i] \neq i$ then $S[i] \leftarrow x[S(i)]$		

The algorithm runs in time $O(\log n)$.

It has work requirement $\mathcal{O}(n \log n)$. non-optimal

This technique is also known as pointer jumping

