4.5 Inserting into a (2,3)-tree

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round $r-1$ and (of course), phase $i-1$ of round r has finished.

This is called Pipelining. Using this technique we can perform all rounds in Step 4 in just $\mathcal{O}(\log k+\log n)$ many parallel steps.

4.6 Symmetry Breaking

\boldsymbol{v}	col	\boldsymbol{k}	$\boldsymbol{c o l}^{\prime}$
1	0001	1	2
3	0011	2	4
7	0111	0	1
14	1110	2	5
2	0010	0	0
15	1111	0	1
4	0100	0	0
5	0101	0	1
6	0110	1	3
8	1000	1	2
10	1010	0	0
11	1011	0	1
12	1100	0	0
9	1001	2	4
13	1101	2	5

4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with $\lceil\log n\rceil$ colors.

```
Algorithm 9 BasicColoring
    : for \(1 \leq i \leq n\) pardo
        \(\operatorname{col}(i) \leftarrow i\)
        \(k_{i} \leftarrow\) smallest bitpos where \(\operatorname{col}(i)\) and \(\operatorname{col}(S(i))\) differ
        \(\operatorname{col}^{\prime}(i) \leftarrow 2 k+\operatorname{col}(i)_{k}\)
```


4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil \leq\left\lceil\log _{2}(t-1)\right\rceil+1 \leq\left\lceil\log _{2}(t)\right\rceil+1
$$

Applying the algorithm repeatedly generates a constant number of colors after $\log ^{*} n$ operations.

4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.
Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5=2 t-1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor
    for \(\ell \leftarrow 5\) to 3
            for \(1 \leq i \leq n\) pardo
                if \(\operatorname{col}(i)=\ell\) then
                \(\operatorname{col}(i) \leftarrow \min \{\{0,1,2\} \backslash\{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}\)
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.
101 PA
4.6 Symmetry Breaking

4.6 Symmetry Breaking

Lemma 8

Given n integers in the range $0, \ldots, \mathcal{O}(\log n)$, there is an algorithm that sorts these numbers in $\mathcal{O}(\log n)$ time using a linear number of operations.

Proof: Exercise!

4.6 Symmetry Breaking

Lemma 7

We can color vertices in a ring with three colors in $\mathcal{O}\left(\log ^{*} n\right)$ time and with $\mathcal{O}\left(n \log ^{*} n\right)$ work.
not work optimal

4.6 Symmetry Breaking

```
Algorithm 11 OptColor
    for 1\leqi\leqn pardo
            col(i)\leftarrowi
    apply BasicColoring once
    sort vertices by colors
    for }\ell=2\lceil\operatorname{log}n\rceil\mathrm{ to }3\mathrm{ do
            for all vertices i of color \ell pardo
                col (i)\leftarrow\operatorname{min}{{0,1,2}\{\operatorname{col}(P[i]),\operatorname{col}(S[i])}}
```

We can perform Lines 6 and 7 in time $\mathcal{O}\left(\eta_{\ell}\right)$ only because we sorted before. In general a state' ment like "for constraint pardo" should only contain a contraint on the id's of the processors but not something complicated (like the color) which has to be checked and, hence, induces : iwork. Because of the sorting we can transform this complicated constraint into a constraint on ' just the processor id's.
4.6 Symmetry Breaking

Lemma 9
A ring can be colored with 3 colors in time $\mathcal{O}(\log n)$ and with work $\mathcal{O}(n)$.
work optimal but not too fast

