4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with $\lceil\log n\rceil$ colors.

```
Algorithm 9 BasicColoring
    1: for \(1 \leq i \leq n\) pardo
    2: \(\quad \operatorname{col}(i) \leftarrow i\)
    3: \(\quad k_{i} \leftarrow\) smallest bitpos where \(\operatorname{col}(i)\) and \(\operatorname{col}(S(i))\) differ
    4: \(\quad \operatorname{col}^{\prime}(i) \leftarrow 2 k+\operatorname{col}(i)_{k}\)
```


4.6 Symmetry Breaking

\boldsymbol{v}	col	\boldsymbol{k}	col $^{\prime}$
1	0001	1	2
3	0011	2	4
7	0111	0	1
14	1110	2	5
2	0010	0	0
15	1111	0	1
4	0100	0	0
5	0101	0	1
6	0110	1	3
8	1000	1	2
10	1010	0	0
11	1011	0	1
12	1100	0	0
9	1001	2	4
13	1101	2	5

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil
$$

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil \leq\left\lceil\log _{2}(t-1)\right\rceil+1
$$

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil \leq\left\lceil\log _{2}(t-1)\right\rceil+1 \leq\left\lceil\log _{2}(t)\right\rceil+1
$$

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$
2(t-1)+1
$$

and bit-length at most

$$
\left\lceil\log _{2}(2(t-1)+1)\right\rceil \leq\left\lceil\log _{2}(t-1)\right\rceil+1 \leq\left\lceil\log _{2}(t)\right\rceil+1
$$

Applying the algorithm repeatedly generates a constant number of colors after $\log ^{*} n$ operations.

4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.

4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.
Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5=2 t-1$.

4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.
Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5=2 t-1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor
1: for }\ell\leftarrow5\mathrm{ to }
2: }\quad\mathrm{ for 1 
3: if col(i)=\ell then
4: }\quad\operatorname{col}(i)\leftarrow\operatorname{min}{{0,1,2}\{\operatorname{col}(P[i]),\operatorname{col}(S[i])}
```


4.6 Symmetry Breaking

As long as the bit-length $t \geq 4$ the bit-length decreases.
Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5=2 t-1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor
1: for }\ell\leftarrow5\mathrm{ to }
2: }\quad\mathrm{ for 1 
3: if col}(i)=\ell\mathrm{ then
4: }\quad\operatorname{col}(i)\leftarrow\operatorname{min}{{0,1,2}\{\operatorname{col}(P[i]),\operatorname{col}(S[i])}
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

4.6 Symmetry Breaking

Lemma 7

We can color vertices in a ring with three colors in $\mathcal{O}\left(\log ^{*} n\right)$ time and with $\mathcal{O}\left(n \log ^{*} n\right)$ work.
not work optimal

4.6 Symmetry Breaking

Lemma 8
Given n integers in the range $0, \ldots, \mathcal{O}(\log n)$, there is an algorithm that sorts these numbers in $\mathcal{O}(\log n)$ time using a linear number of operations.

Proof: Exercise!

4.6 Symmetry Breaking

$$
\begin{aligned}
& \text { Algorithm } 11 \text { OptColor } \\
& \hline \text { 1: for } 1 \leq i \leq n \text { pardo } \\
& \text { 2: } \quad \operatorname{col}(i) \leftarrow i \\
& \text { 3: apply BasicColoring once } \\
& \text { 4: sort vertices by colors } \\
& \text { 5: for } \ell=2\lceil\log n\rceil \text { to } 3 \text { do } \\
& \text { 6: } \quad \text { for all vertices } i \text { of color } \ell \text { pardo } \\
& \text { 7: } \quad \operatorname{col}(i) \leftarrow \min \{\{0,1,2\} \backslash\{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
\end{aligned}
$$

Lemma 9

A ring can be colored with 3 colors in time $\mathcal{O}(\log n)$ and with work $\mathcal{O}(n)$.
work optimal but not too fast

