The following algorithm colors an n-node cycle with $\lceil \log n \rceil$ colors.

Algorithm 9 BasicColoring

1: for $1 \le i \le n$ pardo

2: $\operatorname{col}(i) \leftarrow i$

3: $k_i \leftarrow \text{smallest bitpos where } \operatorname{col}(i) \text{ and } \operatorname{col}(S(i)) \text{ differ}$

4: $\operatorname{col}'(i) \leftarrow 2k + \operatorname{col}(i)_k$

	_	_	,
v	col	k	col'
1	0001	1	2
3	0011	2	4
7	0111	0	1
14	1110	2	5
2	0010	0	0
15	1111	0	1
4	0100	0	0
5	0101	0	1
6	0110	1	3
8	1000	1	2
10	1010	0	0
11	1011	0	1
12	1100	0	0
9	1001	2	4
13	1101	2	5

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

 $\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(t-1) \rceil + 1 \le \lceil \log_2(t) \rceil + 1$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \leq \lceil \log_2(t-1) \rceil + 1 \leq \lceil \log_2(t) \rceil + 1$$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \leq \lceil \log_2(t-1) \rceil + 1 \leq \lceil \log_2(t) \rceil + 1$$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \leq \lceil \log_2(t-1) \rceil + 1 \leq \lceil \log_2(t) \rceil + 1$$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1)+1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \leq \lceil \log_2(t-1) \rceil + 1 \leq \lceil \log_2(t) \rceil + 1$$

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor

1: for \ell \leftarrow 5 to 3

2: for 1 \le i \le n pardo

3: if \operatorname{col}(i) = \ell then

4: \operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range 0, ..., 5 = 2t - 1.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor

1: for \ell - 5 to 3

2: for 1 \le i \le n pardo

3: if \operatorname{col}(i) = \ell then

4: \operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
```

This requires time O(1) and work O(n).

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range 0, ..., 5 = 2t - 1.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor

1: for \ell \leftarrow 5 to 3

2: for 1 \le i \le n pardo

3: if \operatorname{col}(i) = \ell then

4: \operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range 0, ..., 5 = 2t - 1.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

```
Algorithm 10 ReColor

1: for \ell \leftarrow 5 to 3

2: for 1 \le i \le n pardo

3: if \operatorname{col}(i) = \ell then

4: \operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}
```

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

Lemma 7

We can color vertices in a ring with three colors in $O(\log^* n)$ time and with $O(n \log^* n)$ work.

not work optimal

Lemma 8

Given n integers in the range $0, \ldots, \mathcal{O}(\log n)$, there is an algorithm that sorts these numbers in $\mathcal{O}(\log n)$ time using a linear number of operations.

Proof: Exercise!

Algorithm 11 OptColor

- 1: for $1 \le i \le n$ pardo
- 2: $\operatorname{col}(i) \leftarrow i$
- 3: apply BasicColoring once
- 4: sort vertices by colors
- 5: **for** $\ell = 2\lceil \log n \rceil$ **to** 3 **do**
- 6: **for** all vertices i of color ℓ **pardo**
- 7: $\operatorname{col}(i) \leftarrow \min\{\{0, 1, 2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}$

Lemma 9

A ring can be colored with 3 colors in time $O(\log n)$ and with work O(n).

work optimal but not too fast

