Parallel Algorithms

Due date: December 10th, 2013 before class!

Problem 1 (10 Points)

Define a bisection as a cut of a graph, i.e. a subset of nodes or edges, such that the graph is partitioned into two equally sized parts.
Given an d-dimensional hypercube, show that the removal of the nodes with size $\left\lceil\frac{d}{2}\right\rceil$ and size $\left\lfloor\frac{d}{2}\right\rfloor$ (i.e. nodes with that many 1s) results in a bisection containing $\Theta\left(\frac{2^{d}}{\sqrt{d}}\right)$ nodes.

Problem $2(10$ Points)

Let u and v be nodes of the d-dimensional hypercube, and let $u_{1}, u_{2}, \ldots, u_{d}$ and $v_{1}, v_{2}, \ldots, v_{d}$ denote their neighbors, respectively. Let π be any permutation on $\{1,2, \ldots, d\}$. Show that there is an automorphism of the hypercube σ such that $\sigma(u)=v$ and $\sigma\left(u_{i}\right)=v_{\pi(i)}$ for $1 \leq i \leq d$.
Hint: An automorphism of a graph is a one-to-one mapping of the nodes to the nodes such that edges are mapped to edges.

Problem 3 (10 Points)

Prove that the d-dimensional wrapped butterfly is Hamiltonian for $d \geq 2$.
Hint: You may try an induction on the dimension d of the network.

