Efficient Algorithms and Datastructures II

Aufgabe 1 (10 Punkte)

In the maximum directed cut problem, we are given a directed graph $G=(V, A)$, and non-negative weights $w_{i j} \geq 0, \forall(i, j) \in A$. The goal is to partition V into 2 parts U and V so as to maximize the total weights of the arcs going from U to W. (we say that (i, j) goes from U to W if $i \in U$ and $j \in W$). Give a randomized $\frac{1}{4}$ approximation algorithm for this problem.

Aufgabe 2 (10 Punkte)

(a) In the maximum k-cut problem, we are given an undirected graph $G=(V, E)$, and non-negative weights $w_{i j} \geq 0, \forall(i, j) \in E$. The goal is to partition the vertex set V into k parts V_{1}, \ldots, V_{k} so as to maximize the weights of all edges whose endpoints are in different parts (i.e., $\max _{(i, j) \in E: i \in V_{a}, j \in V_{b}, a \neq b} w_{i j}$). Give a randomized $\frac{k-1}{k}$ approximation algorithm for the maximum k-cut problem.
(b) Derandomize the above algorithm.

Aufgabe 3 (10 Punkte)

(a) Show that for everty $0<\epsilon<1$,

$$
P C P_{\frac{2}{3}, \frac{1}{3}}[r, q] \subseteq P C P_{1-\epsilon, \epsilon}[O(r \cdot \log (1 / \epsilon)), O(q \cdot \log (1 / \epsilon))]
$$

(b) Show that for any r and $\epsilon>0$,

$$
P C P_{\frac{2}{3}, \frac{1}{3}}[r, O(1)] \subseteq P C P_{1-\epsilon, \epsilon}[r, \operatorname{poly}(1 / \epsilon)]
$$

