Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau Spring Semester 2014 Problem Set 0 April 8, 2014

Complexity Theory

Problem 1 (10 Points)

Recall the definition of the Landau notation for $f, g: \mathbb{N} \to \mathbb{N}$:

 $\begin{aligned} f &= \mathcal{O}(g) : \iff \quad \exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : f(n) \le c \cdot g(n), \\ f &= \Omega(g) : \iff \quad g = \mathcal{O}(f) \\ f &= \Theta(g) : \iff \quad f = \mathcal{O}(g) \land f = \Omega(g), \\ f &= o(g) : \iff \quad \forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : f(n) \le c \cdot g(n), \\ f &= \omega(g) : \iff \quad g = o(f). \end{aligned}$

Remark: Depending on the author, you will see the notations $f = \mathcal{O}(g)$ or $f \in \mathcal{O}(g)$, respectively. Both notations are tolerated, just be consistent with yours!

- (a) For strictly positive functions f, g, i.e. f(n), g(n) > 0 for all $n \in \mathbb{N}$, show or disprove:
 - (i) $f = \Theta(g)$ if and only if there exist $c_1, c_2 > 0$ such that $c_1 \leq \frac{f(n)}{g(n)} \leq c_2$ for almost all $n \in \mathbb{N}$. ("almost all" is equivalent to "except for finitely many").
 - (ii) f = o(g) if and only if $\lim_{n \to \infty} \frac{f(n)}{q(n)} = 0$.
- (b) Show that polynomial growth is dominated by exponential growth, i.e. for every d > 0, b > 1 it holds that $n^d = o(b^n)$.
- (c) For each of the following pairs of functions f, g determine whether f = o(g), g = o(f)or $f = \Theta(g)$.
 - (i) $f(n) = n^2$, $g(n) = 2n^2 + 100\sqrt{n}$,
 - (ii) f(n) = 1000n, $g(n) = n \log n$,
 - (iii) $f(n) = 2^{2^{n+1}}, \quad g(n) = 2^{2^n},$
 - (iv) $f(n) = n^n$, $g(n) = 2^{2^n}$.

Problem 2 (10 Points)

Prove that the following languages/decision problems on graphs are in \mathcal{P} : (You may pick either the adjacency matrix or adjacency list representation for graphs, it will not make a difference — can you see why?)

(a) CONNECTED — the set of all connected graphs. That is, $G \in \text{CONNECTED}$ if every pair of vertices u, v in G is connected by a path.

- (b) TRIANGLEFREE the set of all graphs that do not contain a triangle (i.e., a triplet u, v, w of pairwise connected distinct vertices).
- (c) BIPARTITE the set of all bipartite graphs. That is, $G \in BIPARTITE$ if the vertices of G can be partitioned into two sets A, B such that all edges in G are from a vertex in A to a vertex in B (there is no edge between two members of A or two members of B).

Problem 3 (10 Points)

(a) We are given a 1-tape Turing machine with alphabet $\Gamma = \{0, 1, ...\}$, a set of states $Q = \{q_1, q_2, q_3, q_4\}$, and the transition function δ , defined by

$q \in Q$	$s\in \Gamma$		$\delta(q,s)$	
q_1	_	q_2	0	R
q_2	_	q_3	_	R
q_3	_	q_4	1	R
q_4	_	q_1	_	R

On every other possible input for δ , the machine does nothing in this step. The TM is started with an empty tape (i.e., only _ symbols on it). What does this TM do?

- (b) Give an example of a 1-tape Turing machine for identifying palindromes over $\{0, 1\}$. (A palindrom is a word that can be read the same way in either direction, i.e. PALINDROMES = $\{x \in \{0, 1\}^* : x = x^R\}$.)
- (c) A Turing machine is called *oblivious* if the position of its heads at the *i*-th step of its computation on input x only depend on i and |x|, not on the input x itself.

Let L be a language that is decided by a Turing machine M in time t(n). Show that there exists an oblivious Turing machine M' that decides L in time $\mathcal{O}(t(n)\log t(n))$.

Problem 4 (10 Points)

Consider a variant of the KNAPSACK problem: Given a set of natural numbers $A = \{a_1, \ldots, a_n\}$ and a natural number b, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} a = b$?

Show that in unary representation this problem can be solved in polynomial time. (Unary representation uses only one digit, 1. The representation of a natural number N is therefore 1 repeated N times.)