Spring Semester 2014 Problem Set 2 April 28, 2014

Complexity Theory

Due date: May 5, 2014 before class!

Problem 1 (10 Points)

- (i) One can easily show that the polynomial-time many-to-one reduction \preceq_m^p is reflexive (i.e. $A \preceq_m^p A$ for all languages A) and transitive (i.e., if $A \preceq_m^p B$ and $B \preceq_m^p C$, then $A \preceq_m^p C$). But is it also commutative (i.e., if $A \preceq_m^p B$, then $B \preceq_m^p A$)?
- (ii) Show or disprove: \mathcal{NP} is closed under union or intersection, respectively. (Meaning that if $L_1, L_2 \in \mathcal{NP}$, then $L_1 \cup L_2 \in \mathcal{NP}$ or $L_1 \cap L_2 \in \mathcal{NP}$, respectively.)

Problem 2 (10 Points)

Define the following problems:

- DNF-SAT is the set of all satisfiable boolean formulae in disjunctive normal form.
- 2SAT is the set of all satisfiable boolean formulae in conjunctive normal form where every clause consists of at most two literals.
- (i) Prove that DNF-SAT is in \mathcal{P} .
- (ii) Prove that 2SAT is in \mathcal{P} .

Problem 3 (10 Points)

Let Binary LP be the set of satisfiable integer linear programs with solutions in $\{0, 1\}$. Prove that 3SAT \leq_m^p Binary LP. Show how your reduction works on the formula

$$(x \vee \overline{y} \vee \overline{z}) \wedge (x \vee y \vee \overline{w}) \wedge (\overline{x} \vee y \vee \overline{w}) \wedge (\overline{y} \vee z \vee w).$$

Problem 4 (10 Points)

(Berman 1978) A unary language contains strings of the form 1^m , i.e. strings of m ones for some m > 0. Show that if a \mathcal{NP} -complete unary language exists, then $\mathcal{P} = \mathcal{NP}$.