Complexity Theory

Due date: May 5, 2014 before class!

Problem 1 (10 Points)

(i) One can easily show that the polynomial-time many-to-one reduction \preceq_{m}^{p} is reflexive (i.e. $A \preceq_{m}^{p} A$ for all languages A) and transitive (i.e., if $A \preceq_{m}^{p} B$ and $B \preceq_{m}^{p} C$, then $A \preceq_{m}^{p} C$). But is it also commutative (i.e., if $A \preceq_{m}^{p} B$, then $B \preceq_{m}^{p} A$)?
(ii) Show or disprove: $\mathcal{N P}$ is closed under union or intersection, respectively. (Meaning that if $L_{1}, L_{2} \in \mathcal{N} \mathcal{P}$, then $L_{1} \cup L_{2} \in \mathcal{N} \mathcal{P}$ or $L_{1} \cap L_{2} \in \mathcal{N} \mathcal{P}$, respectively.)

Problem 2 (10 Points)

Define the following problems:

- DNF-SAT is the set of all satisfiable boolean formulae in disjunctive normal form.
- 2SAT is the set of all satisfiable boolean formulae in conjunctive normal form where every clause consists of at most two literals.
(i) Prove that DNF-Sat is in \mathcal{P}.
(ii) Prove that 2 SAT is in \mathcal{P}.

Problem 3 (10 Points)

Let Binary LP be the set of satisfiable integer linear programs with solutions in $\{0,1\}$. Prove that 3SAT \preceq_{m}^{p} Binary LP. Show how your reduction works on the formula

$$
(x \vee \bar{y} \vee \bar{z}) \wedge(x \vee y \vee \bar{w}) \wedge(\bar{x} \vee y \vee \bar{w}) \wedge(\bar{y} \vee z \vee w)
$$

Problem 4 (10 Points)

(Berman 1978) A unary language contains strings of the form 1^{m}, i.e. strings of m ones for some $m>0$. Show that if a $\mathcal{N} \mathcal{P}$-complete unary language exists, then $\mathcal{P}=\mathcal{N} \mathcal{P}$.

