2.3 Regular expressions to NFA- ϵ

For the RE $\left(a^{*} b^{*}+c\right)^{*} d$, we intuitively construct the following NFA- ϵ :

2.3 Regular expressions to NFA- ϵ

Formally, we have the following rules:
2.3 Regular expressions to NFA- ϵ

42/431

$$
\begin{array}{rlrl}
\eta \cdot r & \leadsto \emptyset & r \cdot \emptyset & \leadsto \emptyset \\
r+\emptyset & \leadsto r & \emptyset+r & \leadsto r \\
\emptyset^{*} & \leadsto \epsilon \\
& \longrightarrow a
\end{array}
$$

Automaton for the regular expression a, where $a \in \Sigma \cup\{\epsilon\}$

Rule for concatenation

Rule for choice

Rule for Kleene iteration
2.3 Regular expressions to NFA- ϵ

$$
\begin{array}{rlrl}
\emptyset \cdot r & \leadsto \emptyset & r \cdot \emptyset & \leadsto \emptyset \\
r+\emptyset & \leadsto r & \emptyset+r & \leadsto r \\
\emptyset^{*} & \leadsto \epsilon \\
& \longrightarrow a
\end{array}
$$

Automaton for the regular expression a, where $a \in \Sigma \cup\{\epsilon\}$

Rule for concatenation

Rule for choice

Rule for Kleene iteration
2.3 Regular expressions to NFA- ϵ

$$
\begin{array}{rlrl}
\eta \cdot r & \leadsto \emptyset & r \cdot \emptyset & \leadsto \emptyset \\
r+\emptyset & \leadsto r & \emptyset+r & \leadsto r \\
\emptyset^{*} & \leadsto \epsilon \\
& \longrightarrow a
\end{array}
$$

Automaton for the regular expression a, where $a \in \Sigma \cup\{\epsilon\}$

Rule for concatenation

Rule for choice

Rule for Kleene iteration

$$
\begin{array}{rlrl}
\emptyset \cdot r & \leadsto \emptyset & r \cdot \emptyset & \leadsto 0 \\
r+\emptyset & \leadsto r & \emptyset+r & \leadsto r \\
\emptyset^{*} & \leadsto \epsilon \\
& \longrightarrow a &
\end{array}
$$

Automaton for the regular expression a, where $a \in \Sigma \cup\{\epsilon\}$

Rule for concatenation

Rule for choice

Rule for Kleene iteration

$$
\begin{array}{rlrl}
\emptyset \cdot r & \leadsto \emptyset & r \cdot \emptyset & \leadsto 0 \\
r+\emptyset & \leadsto r & \emptyset+r & \leadsto r \\
\emptyset^{*} & \leadsto \epsilon \\
& \longrightarrow a
\end{array}
$$

Automaton for the regular expression a, where $a \in \Sigma \cup\{\epsilon\}$
 \leadsto

Rule for concatenation

Rule for choice

Rule for Kleene iteration

2.3 Regular expressions to NFA- ϵ

And finally, removing ϵ-transitions, we obtain:

2.3 Regular expressions to NFA- ϵ

2.4 NFA- ϵ to regular expressions

Preprocessing:

Processing:

Postprocessing (if necessary):

2.4 NFA- ϵ to regular expressions

3. Minimization and Reduction

In this section, we are going to look at the problem of constructing minimal size DFA's for a given regular language, or reducing the size of an NFA without changing the language it accepts.

Example 13

3.1 Residual

Definition 14
Let $L \subseteq \Sigma^{*}$ be a language, and $w \in \Sigma^{*}$ a word. The w-residual of L is the language

$$
L^{w}:=\left\{u \in \Sigma^{*} ; w u \in L\right\} .
$$

A language $L^{\prime} \subseteq \Sigma^{*}$ is a residual of L if $L^{\prime}=L^{w}$ for at least one $w \in \Sigma^{*}$.

We note that:

$$
\left(L^{w}\right)^{u}=L^{w u} .
$$

Relation between residuals and states:

Let A be a DFA and q a state of A.
Definition 15
The state-language $L_{A}(q)$ (or just $L(q)$) is the language recognized by A with q as initial state.

We remark:

- State-languages are residuals. For every state q of $A, L(q)$ is a residual of $L(A)$.
- Residuals are state-languages. For every residual R of $L(A)$, there is a state q such that $R=L(q)$.

Important consequence:

A regular language has finitely many residuals, and, equivalently,
languages with infinitely many residuals are not regular.

Canonical DFA for a regular language:

Definition 16
Let $L \subseteq \Sigma^{*}$ be a formal language. The canonical DFA for L is the DFA $C_{L}:=\left(Q_{L}, \Sigma, \delta_{L}, q_{0 L}, F_{L}\right)$ given by

- Q_{L} is the set of residuals of L, i.e., $Q_{L}=\left\{L^{w} ; w \in \Sigma^{*}\right\}$
- $\delta(K, a)=K^{a}$ for every $K \in Q_{L}$ and $a \in \Sigma$
- $q_{0 L}=L$, and
- $F_{L}=\left\{K \in Q_{L} ; \epsilon \in K\right\}$

Theorem 17
The canoncial DFA for L recognizes L.
Proof.
Let $w \in \Sigma^{*}$. We show by induction on $|w|$ that $w \in L$ iff $w \in L\left(C_{L}\right)$.
$\epsilon \in L$
$\Longleftrightarrow \quad L \in F_{L}$
($w=\epsilon$)
(definition of F_{L})
$\Longleftrightarrow \quad q_{0 L} \in F_{L}$
$\epsilon \in L\left(C_{L}\right)$
$a w^{\prime} \in L$
$\Longleftrightarrow \quad w^{\prime} \in L^{a}$
\Longleftrightarrow $w^{\prime} \in L\left(C_{L^{a}}\right)$ $a w^{\prime} \in L\left(C_{L}\right)$
(definition of L^{a})
(induction hypothesis)
$\left(\delta_{L}(L, a)=L^{a}\right)$

Definition 18
Let $L \subseteq \Sigma^{*}$ be a formal language. Define the relation $\equiv_{L} \subseteq \Sigma^{*} \times \Sigma^{*}$ by

$$
x \equiv_{L} y \Leftrightarrow\left(\forall z \in \Sigma^{*}\right)[x z \in L \Leftrightarrow y z \in L]
$$

Lemma 19
\equiv_{L} is a right-invariant equivalence relation.
Here right-invariant means:

$$
x \equiv_{L} y \Rightarrow x u \equiv_{L} y u \text { for all } u .
$$

Proof.
Clear!

Theorem 20 (Myhill-Nerode)
Let $L \subseteq \Sigma^{*}$. Then the following are equivalent:
(1) L is regular
(2) \equiv_{L} has finite index (= number of equivalence classes)
(3) L is the union of some of the finitely many equivalence classes of \equiv_{L}.

Proof.
$(1) \Rightarrow(2)$:
Let $L=L(A)$ for some DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
Then we have

$$
\hat{\delta}\left(q_{0}, x\right)=\hat{\delta}\left(q_{0}, y\right) \quad \Rightarrow \quad x \equiv_{L} y .
$$

Thus there are at most as many equivalence classes as A has states.

Proof.
$(2) \Rightarrow(3)$:
Let $[x]$ be the equivalence class of $x, y \in[x]$ and $x \in L$.
Then, by the definition of \equiv_{L}, we have:

$$
y \in L
$$

Proof.
$(3) \Rightarrow(1)$:
Define $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ with

$$
\begin{aligned}
Q^{\prime} & :=\left\{[x] ; x \in \Sigma^{*}\right\} \quad\left(Q^{\prime} \text { finite! }\right) \\
q_{0}^{\prime} & :=[\epsilon] \\
\delta^{\prime}([x], a) & :=[x a] \quad \forall x \in \Sigma^{*}, a \in \Sigma \quad \text { (consistent!) } \\
F^{\prime} & :=\{[x] ; x \in L\}
\end{aligned}
$$

Then:

$$
L\left(A^{\prime}\right)=L
$$

