
5. Implementing operations on relations using finite automata

We discuss how to implement operations on relations over a (possibly infinite) universe
U . Even though we will encode the elements of U as words, when implementing
relations it is convenient to think of U as an abstract universe, and not as the set Σ∗

of words over some alphabet Σ. The reason is that for some operations we encode an
element of X not by one word, but by many, actually by infinitely many. In the case of
operations on sets this is not necessary, and one can safely identify the object and its
encoding as word.

AFS 5 Implementing operations on relations using finite automata 124/431
c©je/ewm



We shall consider a number of operations on relations, some of which are closely
related to operations on sets, which we have discussed above. For other types of
operations:
Recall:

Projection1(R) : returns the set π1(R) = {x; (∃x)[(x, y) ∈ R]}
Projection2(R) : returns the set π2(R) = {y; (∃y)[(x, y) ∈ R]}
Join(R,S) : returns R ◦ S = {(x, z); (∃y)[(x, y) ∈ R ∧ (y, z) ∈ S]}
Post(X,R) : returns postR(X) = {y ∈ U ; (∃x ∈ X)[(x, y) ∈ R]}
Pre(X,R) : returns preR(X) = {y ∈ U ; (∃x ∈ X)[(y, x) ∈ R]}

AFS 5 Implementing operations on relations using finite automata 125/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 126/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 127/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 128/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 129/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 130/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 131/431
c©je/ewm



Definition 38
Assume an encoding of the universe U over Σ∗ has been fixed. Let A be an NFA.

A accepts x ∈ U if it accepts all encodings of x.

A rejects x ∈ U if it accepts no encoding of x.

A recognizes a set X ⊆ U if

L(A) = {w ∈ Σ∗; w encodes some element of X} .

A set is regular (with respect to the fixed encoding) if it is recognized by some NFA.

Notice that if A recognizes X ⊆ U then, as one would expect, A accepts every x ∈ X
and rejects every x /∈ X. Hence, with this definition, it may be the case that an NFA
neither accepts nor rejects a given x. An NFA is well-formed if it recognizes some set
of objects, and ill-formed otherwise.

AFS 5 Implementing operations on relations using finite automata 132/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 133/431
c©je/ewm



Definition 39
A transducer over Σ is an NFA over the alphabet Σ× Σ.

Transducers are also called Mealy machines.

According to this definition, a transducer accepts sequences of pairs of letters, but it is
convenient to look at it as a machine accepting pairs of words:

AFS 5 Implementing operations on relations using finite automata 134/431
c©je/ewm



Definition 40
Let T be a transducer over Σ. Given words w1 = a1a2 . . . an and w2 = b1b2 . . . bn, we
say that T accepts the pair (w1, w2) if it accepts the word
(a1, b1) . . . (an, bn) ∈ (Σ× Σ)∗.

Definition 41
Let T be a transducer.

T accepts a pair (x, y) ∈ X ×X if it accepts all encodings of (x, y).

T rejects a pair (x, y) ∈ X ×X if it accepts no encoding of (x, y).

T recognizes a relation R ⊆ X ×X if

L(T ) = {(wx, wy) ∈ (Σ× Σ)∗; (wx, wy) encodes some pair of R} .

A relation is regular if it is recognized by some transducer.

AFS 5 Implementing operations on relations using finite automata 135/431
c©je/ewm



Examples of regular relations on numbers (lsbf encoding):

— the identity relation { (n, n) ; n ∈ N0}
— the relation “is double of” { (n, 2n) ; n ∈ N0}

Example 42

The Collatz function is the function f : N→ N defined as follows:

f(n) =

{
3n+ 1 if n is odd
n/2 if n is even

AFS 5 Implementing operations on relations using finite automata 136/431
c©je/ewm



We next show a transducer that recognizes the relation {(n, f(n)); n ∈ N} with lsbf
encoding and with Σ = {0, 1}. The elements of Σ× Σ are represented as column
vectors with two components. The transducer accepts for instance the pair (7, 22)
because it accepts the pairs (111000k, 011010k), that is, it accepts[

1
0

] [
1
1

] [
1
1

] [
0
0

] [
0
1

]([
0
0

])k

for every k ≥ 0.

AFS 5 Implementing operations on relations using finite automata 137/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 138/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 139/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 140/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 141/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 142/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 143/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 144/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 145/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 146/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 147/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 148/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 149/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 150/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 151/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 152/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 153/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 154/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 155/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 156/431
c©je/ewm



AFS 5 Implementing operations on relations using finite automata 157/431
c©je/ewm




