
5. Implementing operations on relations using finite automata

We discuss how to implement operations on relations over a (possibly infinite) universe
U . Even though we will encode the elements of U as words, when implementing
relations it is convenient to think of U as an abstract universe, and not as the set Σ∗

of words over some alphabet Σ. The reason is that for some operations we encode an
element of X not by one word, but by many, actually by infinitely many. In the case of
operations on sets this is not necessary, and one can safely identify the object and its
encoding as word.
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We shall consider a number of operations on relations, some of which are closely
related to operations on sets, which we have discussed above. For other types of
operations:
Recall:

Projection1(R) : returns the set π1(R) = {x; (∃x)[(x, y) ∈ R]}
Projection2(R) : returns the set π2(R) = {y; (∃y)[(x, y) ∈ R]}
Join(R,S) : returns R ◦ S = {(x, z); (∃y)[(x, y) ∈ R ∧ (y, z) ∈ S]}
Post(X,R) : returns postR(X) = {y ∈ U ; (∃x ∈ X)[(x, y) ∈ R]}
Pre(X,R) : returns preR(X) = {y ∈ U ; (∃x ∈ X)[(y, x) ∈ R]}
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Definition 38
Assume an encoding of the universe U over Σ∗ has been fixed. Let A be an NFA.

A accepts x ∈ U if it accepts all encodings of x.

A rejects x ∈ U if it accepts no encoding of x.

A recognizes a set X ⊆ U if

L(A) = {w ∈ Σ∗; w encodes some element of X} .

A set is regular (with respect to the fixed encoding) if it is recognized by some NFA.

Notice that if A recognizes X ⊆ U then, as one would expect, A accepts every x ∈ X
and rejects every x /∈ X. Hence, with this definition, it may be the case that an NFA
neither accepts nor rejects a given x. An NFA is well-formed if it recognizes some set
of objects, and ill-formed otherwise.
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Definition 39
A transducer over Σ is an NFA over the alphabet Σ× Σ.

Transducers are also called Mealy machines.

According to this definition, a transducer accepts sequences of pairs of letters, but it is
convenient to look at it as a machine accepting pairs of words:
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Definition 40
Let T be a transducer over Σ. Given words w1 = a1a2 . . . an and w2 = b1b2 . . . bn, we
say that T accepts the pair (w1, w2) if it accepts the word
(a1, b1) . . . (an, bn) ∈ (Σ× Σ)∗.

Definition 41
Let T be a transducer.

T accepts a pair (x, y) ∈ X ×X if it accepts all encodings of (x, y).

T rejects a pair (x, y) ∈ X ×X if it accepts no encoding of (x, y).

T recognizes a relation R ⊆ X ×X if

L(T ) = {(wx, wy) ∈ (Σ× Σ)∗; (wx, wy) encodes some pair of R} .

A relation is regular if it is recognized by some transducer.

AFS 5 Implementing operations on relations using finite automata 135/431
c©je/ewm



Examples of regular relations on numbers (lsbf encoding):

— the identity relation { (n, n) ; n ∈ N0}
— the relation “is double of” { (n, 2n) ; n ∈ N0}

Example 42

The Collatz function is the function f : N→ N defined as follows:

f(n) =

{
3n+ 1 if n is odd
n/2 if n is even
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We next show a transducer that recognizes the relation {(n, f(n)); n ∈ N} with lsbf
encoding and with Σ = {0, 1}. The elements of Σ× Σ are represented as column
vectors with two components. The transducer accepts for instance the pair (7, 22)
because it accepts the pairs (111000k, 011010k), that is, it accepts[

1
0

] [
1
1

] [
1
1

] [
0
0

] [
0
1

]([
0
0

])k

for every k ≥ 0.
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