Lazy DFAs

- We introduce a new data structure: lazy DFAs. We construct a lazy DFA for $\Sigma^{*} p$ with m states and $2 m$ transitions.
- Lazy DFAs: automata that read the input from a tape by means of a reading head that can move one cell to the right or stay put
- DFA=Lazy DFA whose head never stays put

Lazy DFA for $\sum^{*} p$

- By the fundamental property, the DFA B_{p} for $\Sigma^{*} p$ behaves from state S_{k} as follows:
- If a is a hit, then $\delta_{B}\left(S_{k}, a\right)=S_{k+1}$, i.e., the DFA moves to the next state in the spine.
- If a is a miss, then $\delta_{B}\left(S_{k}, a\right)=\delta_{B}\left(t\left(S_{k}\right), a\right)$, i.e., the DFA moves to the same state it would move to if it were in state $t\left(S_{k}\right)$.
- When a is a miss for S_{k}, the lazy automaton moves to state $t\left(S_{k}\right)$ without advancing the head. In other words, it „delegates" doing the move to $t\left(S_{k}\right)$
- So the lazyDFA behaves the same for all misses.

- Formally,
$-\delta_{C}\left(S_{k}, a\right)=\left(S_{k+1}, R\right)$ if a is a hit
$-\delta_{C}\left(S_{k}, a\right)=\left(t\left(S_{k}\right), N\right)$ if a is a miss
- So the lazy DFA has $m+1$ states and $2 m$ transitions, and can be constructed in $O(m)$ space.
- Running the lazy DFA on the text takes $O(n+m)$ time:
- For every text letter we have a sequence of „stay put" steps followed by a „right" step. Call it a macrostep.
- Let $S_{j_{i}}$ be the state after the i-th macrostep. The number of steps of the i-th macrostep is at most $j_{i-1}-j_{i}+2$.
So the total number of steps is at most
$\sum_{i=1}^{n}\left(j_{i-1}-j_{i}+2\right)=j_{0}-j_{n}+2 n \leq m+2 n$

Computing Miss

- For the $O(m+n)$ bound it remains to show that the lazy DFA can be constructed in $O(m)$ time.
- Let $\mathrm{M} \operatorname{iss}(k)$ be the head of the state reached from S_{k} by a miss.
- It is easy to compute each of $\operatorname{Miss}(0), \ldots, \operatorname{Miss}(m)$ in $O(m)$ time, leading to a $O\left(n+m^{2}\right)$ time algorithm.
- Already good enough for almost all purposes. But, can we compute all of Miss(0), ..., Miss(m) together in time $O(\mathrm{~m})$? Looks impossible!
- It isn't though ...

$$
\begin{aligned}
& \operatorname{miss}\left(S_{i}\right)= \begin{cases}S_{0} & \text { if } i=0 \text { or } i=1 \\
\delta_{B}\left(\operatorname{miss}\left(S_{i-1}\right), b_{i}\right) & \text { if } i>1\end{cases} \\
& \delta_{B}\left(S_{j}, b\right)= \begin{cases}S_{j+1} & \text { if } b=b_{j+1} \text { (hit) } \\
S_{0} & \text { if } b \neq b_{j+1} \text { (miss) and } j=0 \\
\delta_{B}\left(\operatorname{miss}\left(S_{j}\right), b\right) & \text { if } b \neq b_{j+1} \text { (miss) and } j \neq 0\end{cases}
\end{aligned}
$$

$\operatorname{Miss}(p)$
Input: word pattern $p=b_{1} \cdots b_{m}$.
Output: heads of targets of miss transitions.
$1 \operatorname{Miss}(0) \leftarrow 0 ; \operatorname{Miss}(1) \leftarrow 0$
2 for $i \leftarrow 2, \ldots, m$ do
$3 \quad \operatorname{Miss}(i) \leftarrow \operatorname{DeltaB}\left(\operatorname{Miss}(i-1), b_{i}\right)$

DeltaB($j, b)$
Input: number $j \in\{0, \ldots, m\}$, letter b.
Output: head of the state $\delta_{B}\left(S_{j}, b\right)$.
$1 \quad$ while $b \neq b_{j+1}$ and $j \neq 0$ do $j \leftarrow \operatorname{Miss}(j)$
if $b=b_{j+1}$ then return $j+1$
else return 0

```
Miss(p)
Input: word pattern p}=\mp@subsup{b}{1}{}\cdots\mp@subsup{b}{m}{}\mathrm{ .
Output: heads of targets of miss transitions.
    Miss(0)}\leftarrow0;Miss(1)\leftarrow
    for }i\leftarrow2,\ldots,m\mathrm{ do
    Miss(i)\leftarrow\operatorname{DeltaB(Miss}(i-1),\mp@subsup{b}{i}{})
```


DeltaB($j, b)$

Input: number $j \in\{0, \ldots, m\}$, letter b.
Output: head of the state $\delta_{B}\left(S_{j}, b\right)$.
$1 \quad$ while $b \neq b_{j+1}$ and $j \neq 0$ do $j \leftarrow \operatorname{Miss}(j)$ 2 if $b=b_{j+1}$ then return $j+1$
3 else return 0

- All calls to DeltaB lead together to $O(m)$ iterations of the while loop.
- The call

DeltaB(Miss(i-1),b_i) executes at most
$\operatorname{Miss}(i-1)-(\operatorname{Miss}(i)-1)$ iterations.

- Total number of iterations:

$$
\begin{aligned}
& \sum_{i=2}^{m}(\operatorname{Miss}(i-1)-\operatorname{Miss}(i)+1) \\
\leq & \operatorname{Miss}(1)-\operatorname{Miss}(m)+m \\
\leq & m
\end{aligned}
$$

7. Finite Universes

- When the universe is finite (e.g., the interval $\left[0,2^{32}-1\right]$), all objects can be encoded by words of the same length.
- A language L has length $n \geq 0$ if
- $L=\emptyset$ and $n=0$, or
- $L \neq \emptyset$ and every word of L has length n.
- L is a fixed-length language if it has length n for some $n \geq 0$.
- Observe:
- Fixed-length languages contain finitely many words.
- \emptyset and $\{\varepsilon\}$ are the only two languages of length 0 .

The Master Automaton

- The master automaton over Σ is the tuple $\mathrm{M}=\left(Q_{M}, \Sigma, \delta_{M}, F_{M}\right)$, where
$-Q_{M}$ is the set of all fixed-length languages;
$-\delta_{M}: Q_{M} \times \Sigma \rightarrow Q_{M}$ is given by $\delta_{M}(L, a)=L^{a}$;
$-F_{M}$ is the set $\{\{\varepsilon\}\}$.
- Prop: The language recognized from state L of the master automaton is L.
Proof: By induction on the length n of L.
$n=0$. Then either $L=\emptyset$ or $L=\{\varepsilon\}$, and result follows by inspection.
$n>0$. Then $\delta_{M}(L, a)=L^{a}$ for every $a \in \Sigma$, and L^{a} has smaller length than L. By induction hypothesis the state L^{a} recognizes the language L^{a}, and so the state L recognizes the language L.
- We denote the "fragment" of the master automaton reachable from state L by A_{L} :
- Initial state is L.
- States and transitions are those reachable from L.
- Prop: A_{L} is the minimal DFA recognizing L.

Proof: By definition, all states of A_{L} are reachable from its initial state.
Since every state of the master automaton recognizes its „own"
language, distinct states of A_{L} recognize distinct languages.

Data structure for fixed-length languages

- The structure representing the set of languages
$\mathcal{L}=\left\{L_{1}, \ldots, L_{m}\right\}$ is the fragment of the master automaton containing states L_{1}, \ldots, L_{m} and their descendants.
- It is a multi-DFA , i.e., a DFA with multiple initial states.

In order to manipulate multi-DFAs we represent them as a table of nodes. Assume $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$. A node is a pair $\langle q, s\rangle$, where q is a state identifier and $s=\left(q_{1}, \ldots, q_{m}\right)$ is the successor tuple of the node. The multi-DFA is represented by a table containing a node for each state, but the state corresponding to the empty language ${ }^{1}$.

Ident. a-succ b-succ
2
3
4
5
6
7
1
11
0
2
2
2
4 3
4

- We represent multi-DFAs as tables of nodes.
- A node is a pair $\langle q, s\rangle$ where
$-q$ is a state identifier, and
$-s=\left(q_{1}, \ldots, q_{m}\right)$ is a successor tuple.
- The table for a multi-DFA contains a node for each state but the state for the empty language.

7 Finite Universes

- The procedure make $[T](s)$
- returns the state identifier of the node of table T having s as successor tuple, if such a node exists;
- otherwise it adds a new node $\langle q, s\rangle$ to T, where q is a fresh identifier, and returns q.
- make $[T](s)$ assumes that T contains a node for every identifier in s.

