
Lazy DFAs

• We introduce a new data structure: lazy DFAs. 
We construct a lazy DFA for Σ∗푝	with 푚 states 
and 2푚 transitions. 

• Lazy DFAs: automata that read the input from 
a tape by means of a reading head that can 
move one cell to the right or stay put 

• DFA=Lazy DFA whose head never stays put
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Lazy DFA for Σ∗푝
• By the fundamental property, the DFA 퐵 for 훴∗푝

behaves from state 푆 as follows:
– If 푎 is a hit, then 훿 푆 , 푎 = 푆 , i.e., the DFA 

moves to the next state in the spine.
– If 푎 is a miss, then 훿 푆 , 푎 = 훿 푡(푆 ),푎 , i.e., the 

DFA moves to the same state it would move to if it 
were in state 푡(푆 ).

• When 푎 is a miss for 푆 , the lazy automaton moves to 
state 푡 푆 without advancing the head. In other words, 
it „delegates“ doing the move to 푡 푆

• So the lazyDFA behaves the same for all misses.
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• Formally, 
– 훿 푆 , 푎 = (푆 ,푅) if 푎 is a hit
– 훿 푆 , 푎 = 푡(푆 ),푁 if 푎 is a miss

• So the lazy DFA has 푚 + 1 states and 2푚
transitions, and can be constructed in 푂(푚)
space.
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• Running the lazy DFA on the text takes 푂 푛 + 푚
time:
– For every text letter we have a sequence of „stay put“ 

steps followed by a „right“ step. Call it a macrostep.
– Let  푆 be the state after the 푖-th macrostep. The 

number of steps of the 푖-th macrostep is at most 
푗 − 푗 + 2 . 

So the total number of steps is at most 

푗 − 푗 + 2 = 푗 	− 푗 + 2푛	 ≤ 푚 + 2푛		
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Computing 푀푖푠푠
• For the 푂(푚 + 푛) bound it remains to show that the lazy 

DFA can be constructed in 푂(푚) time.
• Let M푖푠푠(푘) be the head of the state reached from 푆 by 

a miss.
• It is easy to compute each of 	푀푖푠푠 0 , … ,푀푖푠푠 푚 in 
푂(푚) time, leading to a 푂(푛 + 푚 ) time algorithm.

• Already good enough for almost all purposes. But, can 
we compute all of 푀푖푠푠 0 , … ,푀푖푠푠 푚 together in 
time 푂 푚 ?	 Looks impossible!

• It isn‘t  though ...
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• All calls to DeltaB lead  together
to	푂(푚) iterations of the while 
loop.

• The call 
퐷푒푙푡푎퐵(푀푖푠푠(푖 − 1), 푏_푖)
executes at most 
푀푖푠푠(푖 − 1)− (푀푖푠푠(푖) − 1)	
iterations.
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• Total number of iterations:

푀푖푠푠 푖 − 1 −푀푖푠푠 푖 + 1 	

≤ 	푀푖푠푠 1 −푀푖푠푠 푚 + 푚
≤ 푚
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7. Finite Universes

When the universe is finite (e.g., the interval [0, 232 − 1] ), all objects can be
encoded by words of the same length.

A language L has length n ≥ 0 if

— L = ∅ and n = 0, or
— L 6= ∅ and every word of L has length n.

L is a fixed-length language if it has length n for some n ≥ 0.

Observe:

— Fixed-length languages contain finitely many words.
— ∅ and {ε} are the only two languages of length 0.
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Ident. a-succ b-succ
 2       1     0
 3       1     1
 4       0     1
 5       2     2
 6       2     3
  7       4     4
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