
Lazy DFAs

• We introduce a new data structure: lazy DFAs.
We construct a lazy DFA for Σ∗푝	with 푚 states
and 2푚 transitions.

• Lazy DFAs: automata that read the input from
a tape by means of a reading head that can
move one cell to the right or stay put

• DFA=Lazy DFA whose head never stays put

AFS 6 Some pattern matching 182/431
c©je/ewm

Lazy DFA for Σ∗푝
• By the fundamental property, the DFA 퐵 for 훴∗푝

behaves from state 푆 as follows:
– If 푎 is a hit, then 훿 푆 , 푎 = 푆 , i.e., the DFA

moves to the next state in the spine.
– If 푎 is a miss, then 훿 푆 , 푎 = 훿 푡(푆),푎 , i.e., the

DFA moves to the same state it would move to if it
were in state 푡(푆).

• When 푎 is a miss for 푆 , the lazy automaton moves to
state 푡 푆 without advancing the head. In other words,
it „delegates“ doing the move to 푡 푆

• So the lazyDFA behaves the same for all misses.

AFS 6 Some pattern matching 183/431
c©je/ewm

AFS 6 Some pattern matching 184/431
c©je/ewm

• Formally,
– 훿 푆 , 푎 = (푆 ,푅) if 푎 is a hit
– 훿 푆 , 푎 = 푡(푆),푁 if 푎 is a miss

• So the lazy DFA has 푚 + 1 states and 2푚
transitions, and can be constructed in 푂(푚)
space.

AFS 6 Some pattern matching 185/431
c©je/ewm

• Running the lazy DFA on the text takes 푂 푛 + 푚
time:
– For every text letter we have a sequence of „stay put“

steps followed by a „right“ step. Call it a macrostep.
– Let 푆 be the state after the 푖-th macrostep. The

number of steps of the 푖-th macrostep is at most
푗 − 푗 + 2 .

So the total number of steps is at most

푗 − 푗 + 2 = 푗 	− 푗 + 2푛	 ≤ 푚 + 2푛		

AFS 6 Some pattern matching 186/431
c©je/ewm

Computing 푀푖푠푠
• For the 푂(푚 + 푛) bound it remains to show that the lazy

DFA can be constructed in 푂(푚) time.
• Let M푖푠푠(푘) be the head of the state reached from 푆 by

a miss.
• It is easy to compute each of 	푀푖푠푠 0 , … ,푀푖푠푠 푚 in
푂(푚) time, leading to a 푂(푛 + 푚) time algorithm.

• Already good enough for almost all purposes. But, can
we compute all of 푀푖푠푠 0 , … ,푀푖푠푠 푚 together in
time 푂 푚 ?	 Looks impossible!

• It isn‘t though ...

AFS 6 Some pattern matching 187/431
c©je/ewm

AFS 6 Some pattern matching 188/431
c©je/ewm

• All calls to DeltaB lead together
to	푂(푚) iterations of the while
loop.

• The call
퐷푒푙푡푎퐵(푀푖푠푠(푖 − 1), 푏_푖)
executes at most
푀푖푠푠(푖 − 1)− (푀푖푠푠(푖) − 1)	
iterations.

AFS 6 Some pattern matching 189/431
c©je/ewm

• Total number of iterations:

푀푖푠푠 푖 − 1 −푀푖푠푠 푖 + 1 	

≤ 	푀푖푠푠 1 −푀푖푠푠 푚 + 푚
≤ 푚

AFS 6 Some pattern matching 190/431
c©je/ewm

7. Finite Universes

When the universe is finite (e.g., the interval [0, 232 − 1]), all objects can be
encoded by words of the same length.

A language L has length n ≥ 0 if

— L = ∅ and n = 0, or
— L 6= ∅ and every word of L has length n.

L is a fixed-length language if it has length n for some n ≥ 0.

Observe:

— Fixed-length languages contain finitely many words.
— ∅ and {ε} are the only two languages of length 0.

AFS 7 Finite Universes 191/431
c©je/ewm

AFS 7 Finite Universes 192/431
c©je/ewm

AFS 7 Finite Universes 193/431
c©je/ewm

AFS 7 Finite Universes 194/431
c©je/ewm

AFS 7 Finite Universes 195/431
c©je/ewm

Ident. a-succ b-succ
 2 1 0
 3 1 1
 4 0 1
 5 2 2
 6 2 3
 7 4 4

AFS 7 Finite Universes 196/431
c©je/ewm

AFS 7 Finite Universes 197/431
c©je/ewm

Ident. a-succ b-succ
 2 1 0
 3 1 1
 4 0 1
 5 2 2
 6 2 3
 7 4 4

AFS 7 Finite Universes 198/431
c©je/ewm

AFS 7 Finite Universes 199/431
c©je/ewm

