## System NFA

1 while $x=1$ do
2 if $y=1$ then
$3 \quad x \leftarrow 0$
$4 \quad y \leftarrow 1-x$
5 end


## System NFA



8 Verification

## System NFA



8 Verification

## Property NFA

- Is there a full execution such that
- initially $y=1$,
- finally $y=0$, and
- y never increases?
- Set of potential executions for this property:

$$
[l, x, 1][l, x, 1]^{*}[l, x, 0]^{*}[5, x, 0]
$$

- Automaton for this set:



## Intersection of the system and property NFAs



- Automaton is empty, and so no execution satisfies the property


## Another property

- Is the assignment $y \leftarrow x-1$ redundant?
- Potential executions that use the assignment: $[l, x, y]^{*}([4, x, 0][1, x, 1]+[4, x, 1][1, x, 0])[l, x, y]^{*}$
- Therefore: assignment redundant iff none of these potential executions is a real execution of the program.


## Networks of automata



- Tuple $\mathcal{A}=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ of NFAs.
- Each NFA has its own alphabet $\Sigma_{i}$ of actions
- Alphabets usually not disjoint!
- $A_{i}$ participates in action $a$ if $a \in \Sigma_{i}$.
- A configuration is a tuple $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ of states, one for each automaton of the network.
- $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ enables $a$ if every participant in $a$ is in a state from which an $a$-transition is possible.
- Enabled actions can occur, and their occurrence simultaneously changes the states of their participants. Non-participants stay idle and don't change their states.


## Configuration graph of the network



```
AsyncProduct \(\left(A_{1}, \ldots, A_{n}\right)\)
Input: a network of automata \(\mathcal{A}=A_{1}, \ldots A_{n}\), where
\(A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, q_{01}, Q_{1}\right), \ldots, A_{n}=\left(Q_{n}, \Sigma_{n}, \delta_{n}, q_{0 n}, Q_{n}\right)\)
Output: the asynchronous product \(A_{1} \otimes \cdots \otimes A_{n}=\left(Q, \Sigma, \delta, q_{0}, F\right)\)
```

```
\(Q, \delta, F \leftarrow \emptyset\)
```

$Q, \delta, F \leftarrow \emptyset$
$q_{0} \leftarrow\left[q_{01}, \ldots, q_{0 n}\right]$
$q_{0} \leftarrow\left[q_{01}, \ldots, q_{0 n}\right]$
$W \leftarrow\left\{\left[q_{01}, \ldots, q_{0 n}\right]\right\}$
$W \leftarrow\left\{\left[q_{01}, \ldots, q_{0 n}\right]\right\}$
while $W \neq \emptyset$ do
while $W \neq \emptyset$ do
pick $\left[q_{1}, \ldots, q_{n}\right]$ from $W$
pick $\left[q_{1}, \ldots, q_{n}\right]$ from $W$
add $\left[q_{1}, \ldots, q_{n}\right]$ to $Q$
add $\left[q_{1}, \ldots, q_{n}\right]$ to $Q$
add $\left[q_{1}, \ldots, q_{n}\right]$ to $F$
add $\left[q_{1}, \ldots, q_{n}\right]$ to $F$
for all $a \in \Sigma_{1} \cup \ldots \cup \Sigma_{n}$ do
for all $a \in \Sigma_{1} \cup \ldots \cup \Sigma_{n}$ do
for all $i \in[1 . . n]$ do
for all $i \in[1 . . n]$ do
if $a \in \Sigma_{i}$ then $Q_{i}^{\prime} \leftarrow \delta_{i}\left(q_{i}, a\right)$ else $Q_{i}^{\prime}=\left\{q_{i}\right\}$
if $a \in \Sigma_{i}$ then $Q_{i}^{\prime} \leftarrow \delta_{i}\left(q_{i}, a\right)$ else $Q_{i}^{\prime}=\left\{q_{i}\right\}$
for all $\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right] \in Q_{1}^{\prime} \times \ldots \times Q_{n}^{\prime}$ do
for all $\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right] \in Q_{1}^{\prime} \times \ldots \times Q_{n}^{\prime}$ do
if $\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right] \notin Q$ then add $\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right]$ to $W$
if $\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right] \notin Q$ then add $\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right]$ to $W$
add $\left(\left[q_{1}, \ldots, q_{n}\right], a,\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right]\right)$ to $\delta$
add $\left(\left[q_{1}, \ldots, q_{n}\right], a,\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right]\right)$ to $\delta$
return $\left(Q, \Sigma, \delta, q_{0}, F\right)$

```
return \(\left(Q, \Sigma, \delta, q_{0}, F\right)\)
```

Concurrent programs as networks of automata:
Lamport's 1-bit algorithm (JACM 86)
Shared variables: $b[1], \ldots, b[n] \in\{0,1\}$, initially 0
Process i $\in\{1, \ldots, n\}$
repeat forever
noncritical section
T: b[i]:=1
for $j \in\{1, \ldots, i-1\}$
if $b[j]=1$ then $b[i]:=0$
await $\neg b[j]$
goto T
for $j \in\{1+1, \ldots, N\}$ await $\neg b[j]$
critical section
$b[i]:=0$

## Network for the two-process case



## Asynchronous product



## Checking properties of the algorithm

- Deadlock freedom: every configuration has at least one successor.
- M utual exclusion: no configuration of the form [ $b_{0}, b_{1}, c_{0}, c_{1}$ ] is reachable
- Bounded overtaking (for process 0 ): after process 0 signals interest in accessing the critical section, process 1 can enter the critical section at most one before process 0 enters.
- Let $N C_{i}, T_{i}, C_{i}$ be the configurations in which process i is non-critical, trying, or critical
- Set of potential executions violating the property:

$$
\Sigma^{*} T_{0}\left(\Sigma \backslash C_{0}\right)^{*} C_{1}\left(\Sigma \backslash C_{0}\right)^{*} N C_{1}\left(\Sigma \backslash C_{0}\right)^{*} C_{1} \Sigma^{*}
$$

$\operatorname{CheckViol}\left(A_{1}, \ldots, A_{n}, V\right)$
Input: a network $\left\langle A_{1}, \ldots A_{n}\right\rangle$, where $A_{i}=\left(Q_{i}, \Sigma_{i}, \delta_{i}, q_{0 i}, Q_{i}\right)$; an NFA $V=\left(Q_{V}, \Sigma_{1} \cup \ldots \cup \Sigma_{n}, \delta_{V}, q_{0 v}, F_{v}\right)$.
Output: true if $A_{1} \otimes \cdots \otimes A_{n} \otimes V$ is nonempty, false otherwise.

```
\(Q \leftarrow \emptyset ; q_{0} \leftarrow\left[q_{01}, \ldots, q_{0 n}, q_{0 v}\right]\)
\(W \leftarrow\left\{q_{0}\right\}\)
while \(W \neq \emptyset\) do
    pick \(\left[q_{1}, \ldots, q_{n}, q\right]\) from \(W\)
    add \(\left[q_{1}, \ldots, q_{n}, q\right]\) to \(Q\)
    for all \(a \in \Sigma_{1} \cup \ldots \cup \Sigma_{n}\) do
        for all \(i \in[1 . . n]\) do
            if \(a \in \Sigma_{i}\) then \(Q_{i}^{\prime} \leftarrow \delta_{i}\left(q_{i}, a\right)\) else \(Q_{i}^{\prime}=\left\{q_{i}\right\}\)
        \(Q^{\prime} \leftarrow \delta_{V}(q, a)\)
        for all \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}, q^{\prime}\right] \in Q_{1}^{\prime} \times \ldots \times Q_{n}^{\prime} \times Q^{\prime}\) do
            if \(\bigwedge_{i=1}^{n} q_{i}^{\prime} \in F_{i}\) and \(q \in F_{v}\) then return true
            if \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}, q^{\prime}\right] \notin Q\) then add \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}, q^{\prime}\right]\) to
    return false
```


## The state-explosion problem

- In sequential programs, the number of reachable configurations grows exponentially in the number of variables.
- Proposition: The following problem is PSPACEcomplete.
- Given: a boolean program $\pi$ (program with only boolean variables), and a NFA $A_{V}$ recognizing a set of potential executions
- Decide: Is $E_{\pi} \cap L\left(A_{V}\right)$ empty?


## The state-explosion problem

- In concurrent programs, the number of reachable configurations also grows exponentially in the number of components.
- Proposition: The following problem is PSPACEcomplete.
- Given: a network of automata $\mathcal{A}=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ and a NFA $A_{V}$ recognizing a set of potential executions of $\mathcal{A}$
- Decide: Is $L\left(A_{1} \otimes \cdots \otimes A_{n} \otimes A_{V}\right)=\varnothing$ ?

