Chapter II ω-Automata

1. ω-Automata and ω-Languages

- ω-automata accept (or reject) words of infinite length
- ω-languages consisting of infinite words appear:
- in verification, as encodings of non-terminating executions of a program
- in arithmetic, as encodings of sets of real numbers

ω-Languages

- An ω-word is an infinite sequence of letters.
- The set of all ω-words is denoted by Σ^{ω}.
- An ω-language is a set of ω-words, i.e., a subset of Σ^{ω}.
- A language L_{1} can be concatenated with an ω language L_{2} to yield the ω-language $L_{1} L_{2}$, but two ω-languages cannot be concatenated.
- The ω-iteration of a language $L \subseteq \Sigma^{\star}$, denoted by L^{ω}, is an ω-language.
- Observe: $\emptyset^{\omega}=\emptyset$.

ω-Regular Expressions

- ω-regular expressions have syntax

$$
s::=r^{\omega}\left|r s_{1}\right| s_{1}+s_{2}
$$

where r is an (ordinary) regular expression.

- The ω-language $L_{\omega}(s)$ of an ω-regular expression s is inductively defined by

$$
\begin{aligned}
& L_{\omega}\left(r^{\omega}\right)=(L(r))^{\omega} L_{\omega}\left(r s_{1}\right)=L(r) L_{\omega}\left(s_{1}\right) \\
& L_{\omega}\left(s_{1}+s_{2}\right)=L_{\omega}\left(s_{1}\right) \cup L_{\omega}\left(s_{2}\right)
\end{aligned}
$$

- A language is ω-regular if it is the language of some ω-regular expression.

Büchi Automata

- Invented by J.R. Büchi, swiss logician.

Büchi Automata

- Same syntax as DFAs and NFAs, but different acceptance condition.
- A run of a Büchi automaton on an ω-word is an infinite sequence of states and transitions.
- A run is accepting if it visits the set of final states infinitely often.
- Final states renamed to accepting states.
- A DBA or NBA A accepts an ω-word if it has an accepting run on it; the ω-language $L_{\omega}(A)$ of A is the set of ω-words it accepts.

Some examples

From ω-Regular Expressions to NBAs

From ω-Regular Expressions to NBAs

1ω-Automata and ω-Languages

From ω-Regular Expressions to NBAs

NBA for s_{1}

From NBAs to ω-Regular Expressions

- Lemma: Let A be a NFA, and let q, q^{\prime} be states of A. The language $L_{q}^{q^{\prime}}$ of words with runs leading from q to q^{\prime} and visiting q^{\prime} exactly once is regular.
- Let $r_{q}^{q^{\prime}}$ denote a regular expression for $L_{q}^{q^{\prime}}$.

From NBAs to ω-Regular Expressions

- Example:

$$
\begin{aligned}
r_{0}^{1} & =(a+b+c)^{*}(b+c) \\
r_{0}^{2} & =(a+b+c)^{*} b \\
r_{1}^{1} & =(b+c)^{*} \\
r_{2}^{2} & =b+(a+c)(a+b+c)^{*} b
\end{aligned}
$$

From NBAs to ω-Regular Expressions

- Given a NBA A, we look at it as a NFA, and compute regular expressions $r_{q}^{q^{\prime}}$.
- We show:

$$
L_{\omega}(A)=L\left(\sum_{q \in F} r_{q_{0}}^{q}\left(r_{q}^{q}\right)^{\omega}\right)
$$

- An ω-word belongs to $L_{\omega}(A)$ iff it is accepted by a run that starts at q_{0} and visits some accepting state q infinitely often.

From NBAs to ω-Regular Expressions

- Example:

$$
L_{\omega}(A)=r_{0}^{1}\left(r_{1}^{1}\right)^{\omega}+r_{0}^{2}\left(r_{2}^{2}\right)^{\omega}
$$

