
DBAs are less expressive than NBAs

• Prop.: The ω-language  푎 + 푏 ∗푏 is not recognized by 
any DBA.

• Proof: By contradiction. Assume some DBA recognizes 
푎 + 푏 ∗푏 .
– DBA accepts 푏 → DFA accepts 푏

DBA accepts 푏 푎 푏 → DFA accepts	푏 푎 푏
DBA accepts 푏 푎 푏 	푎푏 → DFA accepts	푏 푎 푏 푎 푏 etc.

– By determinism, the DBA accepts 	푏 푎 푏 푎 푏 … 푎 푏 	… , 
which does not belong to 푎 + 푏 ∗푏 .
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Generalized Büchi Automata

• Same power as Büchi automata, but more 
adequate for some constructions.

• Several sets of accepting states.
• A run is accepting if it visits each set of accepting 

states infinitely often. 
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From NGAs to NBAs
• Important fact: 

All the sets 퐹 , … ,퐹 	are visited  infinitely often

is equivalent to  

퐹 is eventually visited
and 

every visit  to 퐹 is eventually followed by a visit to 퐹⊕
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From NGAs to NBAs
퐹

퐹

퐹

퐹

퐹

퐹

퐹

퐹

퐹

퐹

퐹

퐹

NGA with 3 sets of 
accepting states

Equivalent NBA 
with 3 copies of 
the NGA
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• Question: Are there other classes of omega-
automata with 
– the same expressive power as NBAs or NGAs, and 
– with equivalent deterministic and 

nondeterministic  versions?

DGAs have the same expressive power as DBAs, 
and so are not equivalent to NGAs.

We are only willing to change the acceptance 
condition!
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Co-Büchi automata

• A nondeterministic co-Büchi automaton (NCA) 
is syntactically identical to a NBA, but a run is 
accepting iff it only visits accepting states 
finitely often.
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Which are the languages?
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Determinizing co-Büchi automata

• Given a NCA 퐴 we construct a DCA 퐵 such that 
퐿 퐴 = 퐿 퐵 .

• We proceed in three steps:
– We assign to every ω-word 푤 a directed acyclic 

graph 푑푎푔(푤) that ``contains´´ all runs of 퐴 on 푤.
– We prove that 푤 is accepted by 퐴 iff 푑푎푔(푤) is 

infinite but contains only finitely many breakpoints.
– We construct a DCA 퐵 that accepts an ω-word 푤 iff 
푑푎푔(푤) is infinite  and contains finitely many 
breakpoints.
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• Running example:
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푑푎푔(푎푏푎 )

푑푎푔( 푎푏 )

AFS 1 ω-Automata and ω-Languages 369/431
c©je/ewm



• 퐴 accepts w iff some infinite path of 푑푎푔 푤
only visits accepting states finitely often 
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Levels of a 푑푎푔

Level 0 Level 1 Level 2 Level 3 Level 4
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Breakpoints of a 푑푎푔

• We defined inductively the set of levels that 
are breakpoints:
– Level 0 is always a breakpoint
– If level 푙	is a breakpoint, then the next level 푙′ such 

that every path between 푙 and 푙 visits an 
accepting state is also a breakpoint.
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Only two breakpoints

Infinitely many breakpoints
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• Lemma: 퐴 accepts 푤 iff 푑푎푔 푤 is infinite and has 
only finitely many breakpoints.

Proof: 
If A accepts w, then 퐴 has at least one run on 푤, and 
so 푑푎푔 푤 	is infinite. Moreover, the run visits 
accepting states only finitely often, and so after it 
stops visiting accepting states there are no further 
breakpoints.
If 푑푎푔 푤 is infinite, then it has an infinite path, and 
so 퐴 has at least one run on 푤. Since 푑푎푔 푤 	has 
finitely many breakpoints, then every infinite path 
visits accepting states only finitely often.
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Constructing the DCA 

• If we could tell if a level is a breakpoint by looking 
at it, we could take the set of breakpoints as 
states of the DCA.

• However, we also need some information about 
its ``history´´.

• Solution: add that information to the level!
• States: pairs [푃,푂] where:

– 푃 is the set of states of a level, and
– 푂 ⊆ 푃 is the set of states ``that owe a visit to the 

accepting states‘‘. Formally: 푞 ∈ 푂 if q is the 
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Constructing the DCA 

• States: pairs [푃,푂] where:
– 푃 is the set of states of a level, and
– 푂 ⊆ 푃 is the set of states ``that owe a visit to the 

accepting states‘‘. 

• Formally: 푞 ∈ 푂 if 푞 is the endpoint of a path 
starting at the last breakpoint that has not yet 
visited any accepting state.
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Constructing the DCA 
• States: pairs [푃,푂]
• Initial state: pair [ 푞 ,∅] if 푞 ∈ 퐹, and 

[ 푞 , 푞 ] otherwise.
• Transitions: 훿 푃,푄 ,푎 = [푃 ,푂 ] where 
푃′ = 훿(푃,푎) , and 
– 푂 = 훿 푂,푎 ∖ 퐹 if 푂 ≠ ∅
(automaton updates set of owing states)
– 푂 = 훿 푃,푎 ∖ 퐹	 if 푂 = ∅
(automaton starts search for next breakpoint)

• Accepting states: pairs [푃,∅] (no owing states)
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• Complexity: at most 3 	states
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Running example
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• Question: Are there other classes of omega-
automata with 
– the same expressive power as NBAs or NGAs, and 
– with equivalent deterministic and 

nondeterministic  versions?

Are co-Büchi automata a positive answer?

Recall ...
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Unfortunately no ...

• Lemma: No DCA recognizes the language 푏∗푎 .
Proof: Assume the contrary. Then the same 
automaton seen as a DBA recognizes the 
complement 푎 + 푏 ∗푏 . Contradiction.

So the quest goes on ...
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