Muller automata

- A nondeterministic Muller automaton (NMA) has a collection $\{F_0, F_1, \dots, F_{m-1}\}$ of sets of accepting states.
- A run is accepting if the set of states it visits infinitely often is equal to one of the sets in the collection.

From Büchi to Muller automata

- Let A be a NBA with set F of accepting states.
- A set of states of A is good if it contains some state of F.
- Let G be the set of all good sets of A.
- Let A' be "the same automaton" as A, but with Muller condition G.
- Let ρ be an arbitrary run of A and A'. We have

```
ho is accepting in A

iff \inf(
ho) contains some state of F

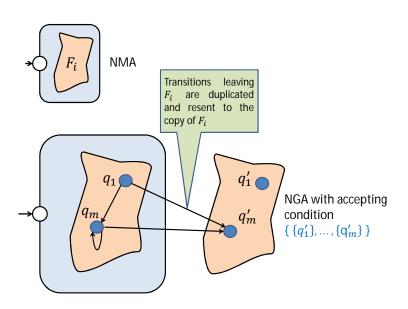
iff \inf(
ho) is a good set of A

iff \rho is accepting in A'
```

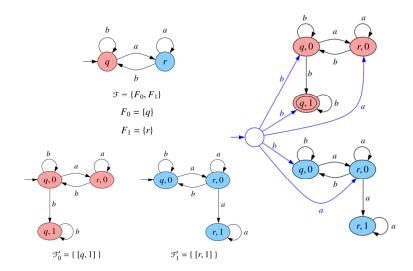

From Muller to Büchi automata

- Let A be a NMA with condition $\{F_0, F_1, \dots, F_{m-1}\}$.
- Let A_0, \ldots, A_{m-1} be NMAs with the same structure as A but Muller conditions $\{F_0\}, \{F_1\}, \ldots, \{F_{m-1}\}$ respectively.
- We have: $L(A) = L(A_0) \cup ... \cup L(A_{m-1})$
- We proceed in two steps:
 - 1. we construct for each NMA A_i an NGA A_i' such that $L(A_i) = L(A_i')$
 - 2. we construct an NGA A' such that

$$L(A') = L(A'_0) \cup ... \cup L(A'_{m-1})$$

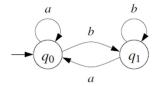


```
NMA1toNGA(A)
Input: NMA A = (Q, \Sigma, q_0, \delta, \{F\})
Output: NGA A = (Q', \Sigma, q'_0, \delta', \mathfrak{F}')
 1 O', \delta', \mathfrak{F}' \leftarrow \emptyset
 2 q_0' \leftarrow [q_0, 0]
 3 W \leftarrow \{[a_0, 0]\}
 4 while W \neq \emptyset do
         pick [q, i] from W; add [q, i] to Q'
         if q \in F and i = 1 then add \{[q, 1]\} to \mathcal{F}'
         for all a \in \Sigma, q' \in \delta(q, a) do
 8
             if i = 0 then
                add ([q, 0], a, [q', 0]) to \delta'
                if [q', 0] \notin Q' then add [q', 0] to W
10
                if a' \in F then
11
                    add ([q, 0], a, [q', 1]) to \delta'
12
13
                    if [q', 1] \notin Q' then add [q', 1] to W
          else /* i = 1 */
14
15
                if q' \in F then
                    add ([q, 1], a, [q', 1]) to \delta'
16
17
                    if [q', 1] \notin Q' then add [q', 1] to W
18 return (Q', \Sigma, q'_0, \delta', \mathfrak{F}')
```



Equivalence of NMAs and DMAs

- Theorem (Safra): Any NBA with n states can be effectively transformed into a DMA of size $n^{O(n)}$. Proof: Omitted.
- DMA for $(a + b)^*b^{\omega}$:



with accepting condition $\{\{q_1\}\}$

- Question: Are there other classes of omegaautomata with
 - the same expressive power as NBAs or NGAs, and
 - with equivalent deterministic and nondeterministic versions?
- Answer: Yes, Muller automata

Is the quest over?

- Recall the translation NBA ⇒ NMA
- The NMA has the same structure as the NBA; its accepting condition are all the good sets of states.
- The translation has exponential complexity.

New question: Is there a class of ω -automata with

- the same expressive power as NBAs,
- equivalent deterministic and nondeterministic versions, and
- polynomial conversions to and from Büchi automata?

Rabin automata

- The acceptance condition is a set of pairs $\{\langle F_0, G_0 \rangle, \dots, \langle F_{m-1}, G_{m-1} \rangle\}$
- A run ρ is accepting if there is a pair $\langle F_i, G_i \rangle$ such that ρ visits the set F_i infinitely often and the set G_i finitely often.
- Translations NBA ⇒ NRA and NRA ⇒ NBA are left as an exercise.
- Theorem (Safra): Any NBA with n states can be effectively transformed into a DRA with n^{O(n)} states and O(n) accepting pairs.

