Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Chris Pinkau

Summer Term 2015 Problem Set 10 June 22, 2015

Complexity Theory

Due date: June 29, 2015 before class!

Problem 1 (10 Points)

Find oracles A, \ldots, E such that the following hold:

- 1. $\mathcal{P}^A = \mathbf{PSPACE}^A$,
- 2. $\mathbf{PH}^B = \mathbf{PSPACE}^B$,
- 3. $\mathbf{PH}^{C} = \mathcal{P}^{C}$,
- 4. $\mathbf{L}^{D} = \mathbf{PSPACE}^{D}$,
- 5. $\mathbf{L}^{E} = \mathcal{P}^{E}$.

Problem 2 (10 Points)

Consider the language $A = \{a^n b^n : n \ge 0\}$, which is in \mathcal{P} . Furthermore, consider a reduction VERTEX COVER $\preceq^p_m A$

$$f(G,k) = \begin{cases} aabb & \text{if } G \text{ has a vertex cover of size } k \\ aab & \text{otherwise} \end{cases}$$

Since VERTEX COVER is \mathcal{NP} -complete, we get that $\mathcal{P} = \mathcal{NP}$. Where is the flaw in this "proof"?

Problem 3 (10 Points)

Describe a decidable language in $\mathcal{P}_{/poly}$ that is not in \mathcal{P} .

Problem 4 (10 Points)

Consider the problem of checking a boolean formula's syntactical correctness. Show that this problem can be decided in log-space, even if we have no precedence relation between the boolean operators and force precedence behavior with parentheses, e.g. $(x \wedge y) \vee (\overline{z} \wedge x) \vee \overline{y} \vee z$ is a valid formula, as is $(x \wedge (y \vee \overline{z}) \wedge x) \vee \overline{y} \vee z$, while $x \wedge y \vee \overline{z} \wedge x \vee \overline{y} \vee z$ is not.