Part II

Foundations

© Harald Räcke

1.4

Vocabularies

n! "n factorial"

 $\binom{n}{k}$ "n choose k"

x_i "x subscript i"
"x sub i"

"x i"

 $\log_b a$ "log to the base b of a" "log a to the base b"

$$f: X \to Y, x \mapsto x^2$$

f is a function that maps from domain (Definitionsbereich) X to codomain (Zielmenge) Y. The set $\{y \in Y \mid \exists x \in X : f(x) = y\}$ is the image or the range of the function (Bildbereich/Wertebereich).

© Harald Räcke

Vocabularies

```
a · b "a times b"
    "a multiplied by b"
    "a into b"

a divided by b"
    "a by b"
    "a over b"

(a: numerator (Zähler), b: denominator (Nenner))

ab "a raised to the b-th power"
    "a to the b-th"
    "a raised to the power of b"
    "a to the power of b"
    "a raised to b"
    "a raised to b"
    "a raised by the exponent of b"
```

© Harald Räcke

15

3 Goals

- ► Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- Learn how to analyze and judge the efficiency of algorithms.
- Learn how to design efficient algorithms.

4 Modelling Issues

1 What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption

4 Modelling Issues

18

20

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose n numbers from the interval $\{1,\ldots,N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n\log N$, which would be the number of bits required to encode the input.

∏∐∏∏ © Harald Räcke

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
 - ► How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- ▶ Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

4 Modelling Issues

19

Model of Computation

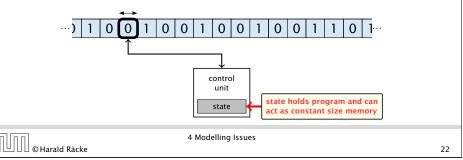
How to measure performance

- 1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), . . .
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

Turing Machine

- Very simple model of computation.
- ▶ Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- ▶ Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.
- ⇒ Not a good model for developing efficient algorithms.



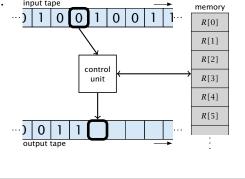
Random Access Machine (RAM)

Operations

- ▶ input operations (input tape $\rightarrow R[i]$)
 - ► READ *i*
- \blacktriangleright output operations $(R[i] \rightarrow \text{output tape})$
 - ► WRITE *i*
- register-register transfers
 - ightharpoonup R[i] := R[i]
 - ightharpoonup R[j] := 4
- indirect addressing
 - ightharpoonup R[i] := R[R[i]]loads the content of the R[i]-th register into the j-th register
 - ightharpoonup R[R[i]] := R[i]loads the content of the j-th into the R[i]-th register

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- ▶ Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \dots$
- Registers hold integers.
- Indirect addressing.



the tapes are one-directional, and that a READ- or WRITE-operation always advances its tape.

Note that in the picture on the right

☐☐☐☐ © Harald Räcke

4 Modellina Issues

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons
 - \triangleright jump xjumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x]
 - ightharpoonup jumpz x R[i]jump to x if R[i] = 0
 - if not the instruction counter is increased by 1;
 - jump to R[i] (indirect jump);
- \blacktriangleright arithmetic instructions: +, -, \times , /
 - ightharpoonup R[i] := R[j] + R[k];R[i] := -R[k];

The jump-directives are very close to the jump-instructions contained in the assembler language of real machines.

Model of Computation

- uniform cost model Every operation takes time 1.
- ► logarithmic cost model

The cost depends on the content of memory cells:

- ► The time for a step is equal to the largest operand involved;
- ▶ The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^w , where usually

$$w = \log_2 n$$
.

The latter model is quite realistic as the word-size of a standard computer that handles a problem of size nmust be at least $\log_2 n$ as otherwise the computer could $\frac{1}{2}$ either not store the problem instance or not address all its memory.

4 Modelling Issues

26

There are different types of complexity bounds:

best-case complexity:

$$C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

$$C_{WC}(n) := \max\{C(x) \mid |x| = n\}$$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability measure μ

$$C_{\operatorname{avg}}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)$$

C(x) cost of instance input length of instance xset of instances of length n

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

1: *r* ← 2;

2: for $i = 1 \rightarrow n$ do

 $r \leftarrow r^2$

4: return γ

- running time:
 - uniform model: n steps
 - logarithmic model: $1 + 2 + 4 + \cdots + 2^n = 2^{n+1} 1 = \Theta(2^n)$
- space requirement:
 - ▶ uniform model: O(1)
 - ▶ logarithmic model: $\mathcal{O}(2^n)$

4 Modellina Issues

27

There are different types of complexity bounds:

amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input

x. Then take the worst-case over all x with |x| = n.

4 Modelling Issues

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox,

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.).

McGraw-Hill, 2009

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section

4 Modellina Issues

30

Asymptotic Notation

Formal Definition

Let f denote functions from \mathbb{N} to \mathbb{R}^+ .

- $\mathcal{O}(f) = \{ g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \ge c \cdot f(n)] \}$ (set of functions that asymptotically grow not slower than f)
- \bullet $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- \bullet $o(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \le c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- $\omega(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \ge n_0 : [g(n) \ge c \cdot f(n)] \}$ (set of functions that asymptotically grow faster than f)

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- ▶ An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- ► A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

5 Asymptotic Notation

29

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \aleph_0 to \mathbb{R}_0^+ .

•
$$g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

•
$$g \in o(f)$$
: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$

•
$$g \in \omega(f)$$
: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$

- Note that for the version of the Landau notation defined here, we assume that f and g are positive func-
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Asymptotic Notation

Abuse of notation

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \to \mathbb{R}^+, n \mapsto f(n)$, and $g: \mathbb{N} \to \mathbb{R}^+, n \mapsto g(n)$.
- **3.** People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that h(n) = f(n) + z(n).
- 2. In this context f(n) does **not** mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule of correspondence of the function).

5 Asymptotic Notation

32

33

Asymptotic Notation in Equations

How do we interpret an expression like:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

Asymptotic Notation

Abuse of notation

4. People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.

5 Asymptotic Notation

32

Asymptotic Notation in Equations

How do we interpret an expression like:

$$2n^2 + \mathcal{O}(n) = \Theta(n^2)$$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

Asymptotic Notation in Equations resents one anonymous function

The $\Theta(i)$ -symbol on the left rep $f: \mathbb{N} \to \mathbb{R}^+$, and then $\sum_i f(i)$ is computed.

How do we interpret an expression like:

$$\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$$

Careful!

"It is understood" that every occurrence of an O-symbol (or $\Theta, \Omega, o, \omega$) on the left represents one anonymous function.

Hence, the left side is not equal to

$$\Theta(1)+\Theta(2)+\cdots+\Theta(n-1)+\Theta(n)$$

$$\Theta(1)+\Theta(2)+\cdots+\Theta(n-1)+\Theta(n) \text{ does }$$
 not really have a reasonable interpretation.

5 Asymptotic Notation

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) = \Theta(n^2)$$

represents

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) \subseteq \Theta(n^2)$$

Note that the equation does not hold.

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as generating a set:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n)$$

represents

$$\begin{cases} f: \mathbb{N} \to \mathbb{R}^+ \mid f(n) = n^2 \cdot g(n) + h(n) \\ & \text{with } g(n) \in \mathcal{O}(n) \text{ and } h(n) \in \mathcal{O}(\log n) \end{cases}$$
 | Recall that according to the previous | slide e.g. the expressions $\sum_{i=1}^n \mathcal{O}(i)$ and $\sum_{i=1}^{n/2} \mathcal{O}(i) + \sum_{i=n/2+1}^n \mathcal{O}(i)$ generate different sets.

5 Asymptotic Notation

Asymptotic Notation

Lemma 3

Let f, g be functions with the property

 $\exists n_0 > 0 \ \forall n \geq n_0 : f(n) > 0$ (the same for g). Then

- $ightharpoonup c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\bullet \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$
- $\triangleright \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\bullet \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

The expressions also hold for Ω . Note that this means that $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\}).$

37

Asymptotic Notation

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- ▶ In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.

☐☐☐ © Harald Räcke

5 Asymptotic Notation

39

41

5 Asymptotic Notation

Bibliography

Kurt Mehlhorn, Peter Sanders: Algorithms and Data Structures — The Basic Toolbox,

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.).

McGraw-Hill, 2009

Mainly Chapter 3 of [CLRS90]. [MS08] covers this topic in chapter 2.1 but not very detailed.

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- ► However, suppose that I have two algorithms:
 - Algorithm A. Running time $f(n) = 1000 \log n = \mathcal{O}(\log n)$.
 - ▶ Algorithm B. Running time $g(n) = \log^2 n$.

Clearly f = o(g). However, as long as $\log n \le 1000$ Algorithm B will be more efficient.

5 Asymptotic Notation

40

6 Recurrences

Algorithm 2 mergesort(list *L*)

```
1: n \leftarrow \text{size}(L)
```

2: **if**
$$n \le 1$$
 return L

3:
$$L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2} \rfloor]$$

4:
$$L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$$

- 5: mergesor $\overline{t}(L_1)$
- 6: mergesort(L_2)
- 7: $L \leftarrow \text{merge}(L_1, L_2)$
- 8: return L

This algorithm requires

$$T(n) = T\left(\left\lceil \frac{n}{2}\right\rceil\right) + T\left(\left\lfloor \frac{n}{2}\right\rfloor\right) + \mathcal{O}(n) \le 2T\left(\left\lceil \frac{n}{2}\right\rceil\right) + \mathcal{O}(n)$$

comparisons when n > 1 and 0 comparisons when $n \le 1$.

5 Asymptotic Notation

6 Recurrences

41

Recurrences

How do we bring the expression for the number of comparisons (≈ running time) into a closed form?

For this we need to solve the recurrence.

6 Recurrences

43

44

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

6 Recurrences

43

6.1 Guessing+Induction

First we need to get rid of the $\mathcal{O}\text{-notation}$ in our recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

Assume that instead we had

$$T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

Suppose we guess $T(n) \le dn \log n$ for a constant d. Then

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$\le dn\log n$$

if we choose $d \ge c$.

Formally one would make an induction proof, where the above is the induction step. The base case is usually trivial.

6.1 Guessing+Induction

46

6.1 Guessing+Induction

Why did we change the recurrence by getting rid of the ceiling?

If we do not do this we instead consider the following recurrence:

$$T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 16 \\ b & \text{otherwise} \end{cases}$$

Note that we can do this as for constant-sized inputs the running time is always some constant (b in the above case).

6.1 Guessing+Induction

 $T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 16 \end{cases}$

Guess: $T(n) \le dn \log n$. **Proof.** (by induction)

- **base case** (2 < n < 16): true if we choose d > h.
- ▶ induction step $2 \dots n-1 \rightarrow n$:

Suppose statem. is true for $n' \in \{2, ..., n-1\}$, and $n \ge 16$. We prove it for n:

$$T(n) \le 2T\left(\frac{n}{2}\right) + cn$$

$$\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= dn(\log n - 1) + cn$$

$$= dn\log n + (c - d)n$$

$$\le dn\log n$$
• Note that this proves the statement for $n \in \mathbb{N}_{\ge 2}$, as the statement is wrong for $n = 1$.
• The base case is usually omitted, as it is the same for different recurrences.

- Note that this proves the statement for $n \in \mathbb{N}_{>2}$, as the statement is wrong for n = 1.
- as it is the same for different recurrences.

Hence, statement is true if we choose $d \ge c$.

6.1 Guessing+Induction

We also make a guess of $T(n) \le dn \log n$ and get

$$T(n) \leq 2T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\leq 2\left(d\left\lceil\frac{n}{2}\right\rceil\log\left\lceil\frac{n}{2}\right\rceil\right) + cn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n}{2} + 1 \leq 2\left(d(n/2 + 1)\log(n/2 + 1)\right) + cn$$

$$\left\lceil\frac{n}{2} + 1 \leq \frac{9}{16}n\right\rceil \leq dn\log\left(\frac{9}{16}n\right) + 2d\log n + cn$$

$$\left[\log\frac{9}{16}n = \log n + (\log 9 - 4)\right] = dn\log n + (\log 9 - 4)dn + 2d\log n + cn$$

$$\left[\log n \leq \frac{n}{4}\right] \leq dn\log n + (\log 9 - 3.5)dn + cn$$

$$\leq dn\log n - 0.33dn + cn$$

$$\leq dn\log n$$

for a suitable choice of d.

48

6.2 Master Theorem

Note that the cases do not cover all pos-

Lemma 4

Let $a \ge 1, b \ge 1$ and $\epsilon > 0$ denote constants. Consider the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) .$$

Case 1.

If $f(n) = \mathcal{O}(n^{\log_b(a) - \epsilon})$ then $T(n) = \Theta(n^{\log_b a})$.

Case 2.

If $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$, $k \ge 0$.

Case 3.

If $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ and for sufficiently large n $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 then $T(n) = \Theta(f(n))$.

6.2 Master Theorem

--

f(n)

 $af(\frac{n}{b})$

 $a^2 f(\frac{n}{h^2})$

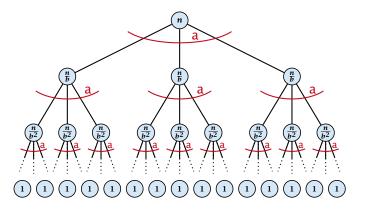
 $a^{\log_b n}$

 $n^{\log_b a}$

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem



© Harald Räcke

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form

 b^{ℓ} , and we assume that the non-recursive case occurs for

51

6.2 Master Theorem

6.2 Master Theorem

problem size 1 and incurs cost 1.

This gives

$$T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right) .$$

Case 1. Now suppose that $f(n) \leq c n^{\log_b a - \epsilon}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}$$

$$\log_b n - 1$$

$$\begin{bmatrix}
b^{-i(\log_b a - \epsilon)} = b^{\epsilon i}(b^{\log_b a})^{-i} = b^{\epsilon i}a^{-i}
\end{bmatrix} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i$$

$$\begin{bmatrix}
\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q - 1}
\end{bmatrix} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)$$

$$= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)$$

$$= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1) / (n^{\epsilon})$$

Hence,

$$T(n) \le \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b(a)}$$
 $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a}).$

Marald Räcke

6.2 Master Theorem

54

Case 2. Now suppose that $f(n) \ge c n^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\ge c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathbf{\Omega}(n^{\log_b a} \log_h n)$$
 $\Rightarrow T(n) = \mathbf{\Omega}(n^{\log_b a} \log n).$

Case 2. Now suppose that $f(n) \le c n^{\log_b a}$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1$$

$$= c n^{\log_b a} \log_b n$$

Hence,

$$T(n) = \mathcal{O}(n^{\log_b a} \log_b n)$$
 $\Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log n).$

© Harald Räcke

6.2 Master Theorem

55

Case 2. Now suppose that $f(n) \le c n^{\log_b a} (\log_b (n))^k$.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k$$

$$n = b^{\ell} \Rightarrow \ell = \log_b n = c n^{\log_b a} \sum_{i=0}^{\ell - 1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell - 1} (\ell - i)^k$$

$$= c n^{\log_b a} \sum_{i=0}^{\ell} i^k \sum_{i=1}^{k} \ell^{k+1}$$

$$\approx \frac{c}{k} n^{\log_b a} \ell^{k+1} \qquad \Rightarrow T(n) = \mathcal{O}(n^{\log_b a} \log^{k+1} n).$$

Case 3. Now suppose that $f(n) \ge dn^{\log_b a + \epsilon}$, and that for sufficiently large n: $a f(n/b) \le c f(n)$, for c < 1.

From this we get $a^i f(n/b^i) \le c^i f(n)$, where we assume that $n/b^{i-1} \ge n_0$ is still sufficiently large.

$$T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)$$

$$\leq \sum_{i=0}^{\log_b n - 1} c^i f(n) + \mathcal{O}(n^{\log_b a})$$

$$q < 1: \sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \leq \frac{1}{1 - c} f(n) + \mathcal{O}(n^{\log_b a})$$

Hence,

$$T(n) \leq \mathcal{O}(f(n))$$

$$\Rightarrow T(n) = \Theta(f(n)).$$

Where did we use $f(n) \ge \Omega(n^{\log_b a + \epsilon})$?

6.2 Master Theorem

60

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer B ($m \le n$).

- This is also nown as the "school method" for multiplying integers.
- · Note that the intermediate numbers that are generated can have at most $m + n \le 2n$ bits.

Time requirement:

▶ Computing intermediate results: O(nm).

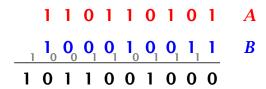
6.2 Master Theorem

▶ Adding m numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$.

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:



This gives that two n-bit integers can be added in time $\mathcal{O}(n)$.

6.2 Master Theorem

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers **A** and **B** are of length $n = 2^k$, for some k.

B_1	B_0	×	A_1	A_0
-------	-------	---	-------	-------

Then it holds that

$$A = A_1 \cdot 2^{\frac{n}{2}} + A_0$$
 and $B = B_1 \cdot 2^{\frac{n}{2}} + B_0$

Hence,

$$A \cdot B = A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{\frac{n}{2}} + A_0 \cdot B_0$$

6.2 Master Theorem

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)1: **if** |A| = |B| = 1 **then** $\mathcal{O}(1)$ return $a_0 \cdot b_0$ $\mathcal{O}(1)$ 3: split A into A_0 and A_1 $\mathcal{O}(n)$ 4: split B into B_0 and B_1 $\mathcal{O}(n)$ $T(\frac{n}{2})$ 5: $Z_2 \leftarrow \text{mult}(A_1, B_1)$ $2T(\frac{n}{2}) + \mathcal{O}(n)$ 6: $Z_1 \leftarrow \text{mult}(A_1, B_0) + \text{mult}(A_0, B_1)$ $T(\frac{n}{2})$ 7: $Z_0 \leftarrow \text{mult}(A_0, B_0)$ 8: **return** $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$ $\mathcal{O}(n)$

We get the following recurrence:

$$T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

© Harald Räcke

6.2 Master Theorem

62

64

Example: Multiplying Two Integers

We can use the following identity to compute Z_1 :

$$Z_1 = A_1 B_0 + A_0 B_1$$
 = Z_2 = Z_0
= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

A more precise (correct) analysis

would say that computing Z_1

needs time $T(\frac{n}{2}+1)+\mathcal{O}(n)$.

Algorithm 4 $mult(A, B)$	
1: if $ A = B = 1$ then	$\mathcal{O}(1)$
2: return $a_0 \cdot b_0$	$\mathcal{O}(1)$
3: split A into A_0 and A_1	$\mathcal{O}(n)$
4: split B into B_0 and B_1	$\mathcal{O}(n)$
$5: Z_2 \leftarrow \operatorname{mult}(A_1, B_1)$	$T(\frac{n}{2})$
6: $Z_0 \leftarrow \operatorname{mult}(A_0, B_0)$	$T(\frac{\bar{n}}{2})$
7: $Z_1 \leftarrow \text{mult}(A_0 + A_1, B_0 + B_1) - Z_2 - Z_0$ 8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	$T(\frac{n}{2}) + \mathcal{O}(n)$
8: return $Z_2 \cdot 2^n + Z_1 \cdot 2^{\frac{n}{2}} + Z_0$	O(n)

© Harald Räcke

6.2 Master Theorem

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

In our case a=4, b=2, and $f(n)=\Theta(n)$. Hence, we are in Case 1, since $n=\mathcal{O}(n^{2-\epsilon})=\mathcal{O}(n^{\log_b a-\epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

6.2 Master Theorem

63

Example: Multiplying Two Integers

We get the following recurrence:

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n) .$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{h}) + f(n)$.

- ► Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = O(n^{\log_b a})$
- ► Case 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_0, c_k \neq 0$).

- ightharpoonup T(n) only depends on the k preceding values. This means the recurrence relation is of order k.
- \blacktriangleright The recurrence is linear as there are no products of T[n]'s.
- If f(n) = 0 then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

6.3 The Characteristic Polynomial

68

The Homogenous Case

The solution space

$$S = \{ \mathcal{T} = T[1], T[2], T[3], \dots \mid \mathcal{T} \text{ fulfills recurrence relation } \}$$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \cdots + c_k \cdot \lambda^{n-k} = 0$$

for all $n \ge k$.

6.3 The Characteristic Polynomial

6.3 The Characteristic Polynomial

Observations:

- ▶ The solution T[1], T[2], T[3],... is completely determined by a set of boundary conditions that specify values for T[1],...,T[k].
- ▶ In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- ▶ Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

6.3 The Characteristic Polynomial

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$\underbrace{c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \dots + c_k}_{\text{characteristic polynomial } P[\lambda]} = 0$$

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$

is a solution for arbitrary values α_i .

The Homogenous Case

Lemma 5

Assume that the characteristic polynomial has k distinct roots $\lambda_1, \ldots, \lambda_k$. Then all solutions to the recurrence relation are of the form

$$\alpha_1\lambda_1^n + \alpha_2\lambda_2^n + \cdots + \alpha_k\lambda_k^n$$
.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

6.3 The Characteristic Polynomial

70

72

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

$$\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_k^2 \\ & & \vdots & & \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_k^k \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} T[1] \\ T[2] \\ \vdots \\ T[k] \end{pmatrix}$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see whether I can choose the $\alpha'_i s$ such that these conditions are met:

© Harald Räcke

6.3 The Characteristic Polynomial

71

Computing the Determinant

$$\begin{vmatrix} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k} \end{vmatrix} = \prod_{i=1}^{k} \lambda_{i} \cdot \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ \lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_{k}^{k-1} \end{vmatrix}$$

$$= \prod_{i=1}^{k} \lambda_{i} \cdot \begin{vmatrix} 1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\ 1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1} \end{vmatrix}$$

Computing the Determinant

$$\begin{vmatrix} 1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\ 1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1} \end{vmatrix} =$$

$$\begin{vmatrix} 1 & \lambda_{1} - \lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2} - \lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1} - \lambda_{1} \cdot \lambda_{1}^{k-2} \\ 1 & \lambda_{2} - \lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2} - \lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1} - \lambda_{1} \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & \lambda_{k} - \lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2} - \lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1} - \lambda_{1} \cdot \lambda_{k}^{k-2} \end{vmatrix}$$

∏∏∏ © Harald Räcke

6.3 The Characteristic Polynomial

74

Computing the Determinant

$$\begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_{2} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-3} & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (\lambda_{k} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-3} & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-2} \end{vmatrix} =$$

$$\begin{vmatrix} k \\ \vdots \\ \vdots \\ 1 & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{2}^{k-2} \\ \vdots & \vdots & \vdots \\ 1 & \lambda_{k} & \cdots & \lambda_{k}^{k-3} & \lambda_{k}^{k-2} \end{vmatrix}$$

Computing the Determinant

$$\begin{vmatrix} 1 & \lambda_{1} - \lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2} - \lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1} - \lambda_{1} \cdot \lambda_{1}^{k-2} \\ 1 & \lambda_{2} - \lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2} - \lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1} - \lambda_{1} \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & \lambda_{k} - \lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2} - \lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1} - \lambda_{1} \cdot \lambda_{k}^{k-2} \end{vmatrix} =$$

$$\begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & (\lambda_{2} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-3} & (\lambda_{2} - \lambda_{1}) \cdot \lambda_{2}^{k-2} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & (\lambda_{k} - \lambda_{1}) \cdot 1 & \cdots & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-3} & (\lambda_{k} - \lambda_{1}) \cdot \lambda_{k}^{k-2} \end{vmatrix}$$

© Harald Räcke

6.3 The Characteristic Polynomial

75

Computing the Determinant

Repeating the above steps gives:

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\ \vdots & \vdots & & \vdots & \vdots \\ \lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k \end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \prod_{i>\ell} (\lambda_i - \lambda_\ell)$$

Hence, if all λ_i 's are different, then the determinant is non-zero.

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$.

To see this consider the polynomial

$$P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_k \lambda^{n-k}$$

Since λ_i is a root we can write this as $Q[\lambda] \cdot (\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root

6.3 The Characteristic Polynomial

78

The Homogeneous Case

Suppose λ_i has multiplicity j. We know that

$$c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \dots + c_k (n-k) \lambda_i^{n-k} = 0$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

$$c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \dots + c_k (n-k)^2 \lambda_i^{n-k} = 0$$

We can continue j-1 times.

Hence, $n^{\ell}\lambda_i^n$ is a solution for $\ell \in 0, ..., j-1$.

This means

$$c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \dots + c_k (n-k) \lambda_i^{n-k-1} = 0$$

Hence,

$$c_0 \underbrace{n\lambda_i^n}_{T[n]} + c_1 \underbrace{(n-1)\lambda_i^{n-1}}_{T[n-1]} + \cdots + c_k \underbrace{(n-k)\lambda_i^{n-k}}_{T[n-k]} = 0$$

© Harald Räcke

6.3 The Characteristic Polynomial

The Homogeneous Case

Lemma 6

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$$

Let λ_i , i = 1, ..., m be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_i . Then the general solution to the recurrence is given by

$$T[n] = \sum_{i=1}^{m} \sum_{j=0}^{\ell_i - 1} \alpha_{ij} \cdot (n^j \lambda_i^n) .$$

The full proof is omitted. We have only shown that any choice of α_{ii} 's is a solution to the recurrence.

Example: Fibonacci Sequence

$$T[0] = 0$$

 $T[1] = 1$
 $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

$$\lambda^2 - \lambda - 1$$

Finding the roots, gives

$$\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)$$

© Harald Räcke

6.3 The Characteristic Polynomial

82

Example: Fibonacci Sequence

Hence, the solution is

$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Example: Fibonacci Sequence

Hence, the solution is of the form

$$\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$T[0] = 0$$
 gives $\alpha + \beta = 0$.

$$T[1] = 1$$
 gives

$$\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}$$

© Harald Räcke

6.3 The Characteristic Polynomial

83

The Inhomogeneous Case

Consider the recurrence relation:

$$c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$$

with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

The Inhomogeneous Case

The general solution of the recurrence relation is

$$T(n) = T_h(n) + T_p(n) ,$$

where T_h is any solution to the homogeneous equation, and T_n is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

∏∏∏ © Harald Räcke

6.3 The Characteristic Polynomial

The Inhomogeneous Case

Example: Characteristic polynomial:

$$\underbrace{\lambda^2 - 2\lambda + 1}_{(\lambda - 1)^2} = 0$$

Then the solution is of the form

$$T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$$

T[0] = 1 gives $\alpha = 1$.

$$T[1] = 2$$
 gives $1 + \beta = 2 \Longrightarrow \beta = 1$.

The Inhomogeneous Case

Example:

$$T[n] = T[n-1] + 1$$
 $T[0] = 1$

Then,

$$T[n-1] = T[n-2] + 1$$
 $(n \ge 2)$

Subtracting the first from the second equation gives,

$$T[n] - T[n-1] = T[n-1] - T[n-2]$$
 $(n \ge 2)$

or

$$T[n] = 2T[n-1] - T[n-2]$$
 $(n \ge 2)$

I get a completely determined recurrence if I add T[0] = 1 and T[1] = 2.

6.3 The Characteristic Polynomial

87

The Inhomogeneous Case

If f(n) is a polynomial of degree r this method can be applied r+1 times to obtain a homogeneous equation:

$$T[n] = T[n-1] + n^2$$

Shift:

$$T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$$

Difference:

$$T[n] - T[n-1] = T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

$$T[n] = 2T[n-1] - T[n-2] + 2n - 1$$

Shift:

$$T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1$$
$$= 2T[n-2] - T[n-3] + 2n - 3$$

Difference:

$$T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1$$

- $2T[n-2] + T[n-3] - 2n + 3$

$$T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2$$

and so on...

6.4 Generating Functions

Example 8

1. The generating function of the sequence $(1,0,0,\ldots)$ is

$$F(z) = 1$$
.

2. The generating function of the sequence (1, 1, 1, ...) is

$$F(z)=\frac{1}{1-z}.$$

6.4 Generating Functions

Definition 7 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

generating function (Erzeugendenfunktion) is

$$F(z) := \sum_{n \ge 0} a_n z^n;$$

 exponential generating function (exponentielle Erzeugendenfunktion) is

$$F(z) = \sum_{n>0} \frac{a_n}{n!} z^n.$$

6.4 Generating Functions

91

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

Let $f = \sum_{n \ge 0} a_n z^n$ and $g = \sum_{n \ge 0} b_n z^n$.

- **Equality:** f and g are equal if $a_n = b_n$ for all n.
- Addition: $f + g := \sum_{n>0} (a_n + b_n) z^n$.
- ▶ Multiplication: $f \cdot g := \sum_{n \geq 0} c_n z^n$ with $c_n = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

6.4 Generating Functions

Suppose we are given the generating function

$$\sum_{n>0} z^n = \frac{1}{1-z}$$

Formally the derivative of a formal power series $\sum_{n\geq 0} a_n z^n$ is defined as $\sum_{n\geq 0} n a_n z^{n-1}$.

The known rules for differentiation work for this definition. In partic- $\sum_{n\geq 0} z^n = \frac{1}{1-z} \cdot \begin{cases} \text{ular, e.g. the derivative of } \frac{1}{1-z} \text{ is} \\ \frac{1}{(1-z)^2} \cdot \\ \text{Note that this requires a proof if we} \end{cases}$

consider power series as algebraic objects. However, we did not prove this in the lecture.

We can compute the derivative:

$$\sum_{\substack{n \ge 1 \\ \sum_{n > 0} (n+1)z^n}} nz^{n-1} = \frac{1}{(1-z)^2}$$

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

6.4 Generating Functions

What does $\sum_{n\geq 0} z^n = \frac{1}{1-z}$ mean in the algebraic view?

It means that the power series 1 - z and the power series $\sum_{n\geq 0} z^n$ are invers, i.e.,

$$(1-z)\cdot\left(\sum_{n\geq 0}^{\infty}z^n\right)=1.$$

This is well-defined.

6.4 Generating Functions

95

6.4 Generating Functions

We can repeat this

$$\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} .$$

Derivative:

$$\sum_{n\geq 1} n(n+1)z^{n-1} = \frac{2}{(1-z)^3}$$

$$\sum_{n\geq 0} (n+1)(n+2)z^n$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-2)^3}$.

6.4 Generating Functions

Computing the *k*-th derivative of $\sum z^n$.

$$\sum_{n \ge k} n(n-1) \cdot \ldots \cdot (n-k+1) z^{n-k} = \sum_{n \ge 0} (n+k) \cdot \ldots \cdot (n+1) z^n$$
$$= \frac{k!}{(1-z)^{k+1}}.$$

Hence:

$$\sum_{n\geq 0} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}} .$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

6.4 Generating Functions

98

6.4 Generating Functions

We know

$$\sum_{n>0} y^n = \frac{1}{1-y}$$

Hence,

$$\sum_{n>0} a^n z^n = \frac{1}{1 - az}$$

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

6.4 Generating Functions

$$\sum_{n\geq 0} nz^n = \sum_{n\geq 0} (n+1)z^n - \sum_{n\geq 0} z^n$$
$$= \frac{1}{(1-z)^2} - \frac{1}{1-z}$$
$$= \frac{z}{(1-z)^2}$$

The generating function of the sequence $a_n = n$ is $\frac{z}{(1-z)^2}$.

-ka

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

6.4 Generating Functions

$$A(z) = \sum_{n\geq 0} a_n z^n$$

$$= a_0 + \sum_{n\geq 1} (a_{n-1} + 1) z^n$$

$$= 1 + z \sum_{n\geq 1} a_{n-1} z^{n-1} + \sum_{n\geq 1} z^n$$

$$= z \sum_{n\geq 0} a_n z^n + \sum_{n\geq 0} z^n$$

$$= zA(z) + \sum_{n\geq 0} z^n$$

$$= zA(z) + \frac{1}{1-z}$$

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Solving for A(z) gives

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{(1-z)^2} = \sum_{n\geq 0} (n+1) z^n$$

Hence, $a_n = n + 1$.

6.4 Generating Functions

102

Some Generating Functions

n-th sequence element	generating function	
cf_n	cF	
$f_n + g_n$	F+G	
$\sum_{i=0}^{n} f_i \mathcal{G}_{n-i}$	$F\cdot G$	
f_{n-k} $(n \ge k)$; 0 otw.	$z^k F$	
$\sum_{i=0}^{n} f_i$	$\frac{F(z)}{1-z}$	
nf_n	$z\frac{\mathrm{d}F(z)}{\mathrm{d}z}$	
$c^n f_n$	F(cz)	

Some Generating Functions

n-th sequence element	generating function	
1	$\frac{1}{1-z}$	
n+1	$\frac{1}{(1-z)^2}$	
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$	
n	$\frac{z}{(1-z)^2}$	
a^n	$\frac{1}{1-az}$	
n^2	$\frac{z(1+z)}{(1-z)^3}$	
$\frac{1}{n!}$	e^z	

© Harald Räcke

6.4 Generating Functions

103

Solving Recursions with Generating Functions

- 1. Set $A(z) = \sum_{n>0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- **3.** Do further transformations so that the infinite sums on the right hand side can be replaced by A(z).
- **4.** Solving for A(z) gives an equation of the form A(z) = f(z), where hopefully f(z) is a simple function.
- 5. Write f(z) as a formal power series. Techniques:
 - partial fraction decomposition (Partialbruchzerlegung)
 - lookup in tables
- **6.** The coefficients of the resulting power series are the a_n .

Example: $a_n = 2a_{n-1}, a_0 = 1$

1. Set up generating function:

$$A(z) = \sum_{n>0} a_n z^n$$

2. Transform right hand side so that recurrence can be plugged in:

$$A(z) = a_0 + \sum_{n \ge 1} a_n z^n$$

2. Plug in:

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

6.4 Generating Functions

106

108

Example: $a_n = 2a_{n-1}, a_0 = 1$

5. Rewrite f(z) as a power series:

$$\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n\geq 0} 2^n z^n$$

Example: $a_n = 2a_{n-1}, a_0 = 1$

3. Transform right hand side so that infinite sums can be replaced by A(z) or by simple function.

$$A(z) = 1 + \sum_{n \ge 1} (2a_{n-1})z^n$$

$$= 1 + 2z \sum_{n \ge 1} a_{n-1}z^{n-1}$$

$$= 1 + 2z \sum_{n \ge 0} a_n z^n$$

$$= 1 + 2z \cdot A(z)$$

4. Solve for A(z).

$$A(z) = \frac{1}{1 - 2z}$$

© Harald Räcke

6.4 Generating Functions

107

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

1. Set up generating function:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

2./3. Transform right hand side:

$$A(z) = \sum_{n \ge 0} a_n z^n$$

$$= a_0 + \sum_{n \ge 1} a_n z^n$$

$$= 1 + \sum_{n \ge 1} (3a_{n-1} + n) z^n$$

$$= 1 + 3z \sum_{n \ge 1} a_{n-1} z^{n-1} + \sum_{n \ge 1} n z^n$$

$$= 1 + 3z \sum_{n \ge 0} a_n z^n + \sum_{n \ge 0} n z^n$$

$$= 1 + 3z A(z) + \frac{z}{(1-z)^2}$$

© Harald Räcke

6.4 Generating Functions

110

112

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

$$\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}$$

This gives

$$z^{2}-z+1 = A(1-z)^{2} + B(1-3z)(1-z) + C(1-3z)$$

$$= A(1-2z+z^{2}) + B(1-4z+3z^{2}) + C(1-3z)$$

$$= (A+3B)z^{2} + (-2A-4B-3C)z + (A+B+C)$$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

4. Solve for A(z):

$$A(z) = 1 + 3zA(z) + \frac{z}{(1-z)^2}$$

gives

$$A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}$$

© Harald Räcke

6.4 Generating Functions

111

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

This leads to the following conditions:

$$A + B + C = 1$$
$$2A + 4B + 3C = 1$$
$$A + 3B = 1$$

which gives

$$A = \frac{7}{4}$$
 $B = -\frac{1}{4}$ $C = -\frac{1}{2}$

6.4 Generating Functions

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write f(z) as a formal power series:

$$A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}$$

$$= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n$$

$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2} (n + 1) \right) z^n$$

$$= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2} n - \frac{3}{4} \right) z^n$$

6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.

6.4 Generating Functions

114

6.5 Transformation of the Recurrence

Example 10

$$f_1=1$$

$$f_n=3f_{\frac{n}{2}}+n; \text{ for } n=2^k, \ k\geq 1 \ ;$$

Define

$$g_k := f_{2^k}$$
.

Then:

$$g_0 = 1$$

 $g_k = 3g_{k-1} + 2^k, \ k \ge 1$

6.5 Transformation of the Recurrence

Example 9

$$f_0=1$$

 $f_1=2$
 $f_n=f_{n-1}\cdot f_{n-2}$ for $n\geq 2$.

Define

$$g_n := \log f_n$$
.

Then

$$g_n = g_{n-1} + g_{n-2}$$
 for $n \ge 2$
 $g_1 = \log 2 = 1$ (for $\log = \log_2$), $g_0 = 0$
 $g_n = F_n$ (n -th Fibonacci number)
 $f_n = 2^{F_n}$

6.5 Transformation of the Recurrence

115

6 Recurrences

We get

$$g_k = 3 [g_{k-1}] + 2^k$$

$$= 3 [3g_{k-2} + 2^{k-1}] + 2^k$$

$$= 3^2 [g_{k-2}] + 32^{k-1} + 2^k$$

$$= 3^2 [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^k$$

$$= 3^3 g_{k-3} + 3^2 2^{k-2} + 32^{k-1} + 2^k$$

$$= 2^k \cdot \sum_{i=0}^k \left(\frac{3}{2}\right)^i$$

$$= 2^k \cdot \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{1/2} = 3^{k+1} - 2^{k+1}$$

6 Recurrences

Let $n = 2^k$:

$$g_k = 3^{k+1} - 2^{k+1}$$
, hence
 $f_n = 3 \cdot 3^k - 2 \cdot 2^k$
 $= 3(2^{\log 3})^k - 2 \cdot 2^k$
 $= 3(2^k)^{\log 3} - 2 \cdot 2^k$
 $= 3n^{\log 3} - 2n$.

6.5 Transformation of the Recurrence

118

6 Recurrences

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox,

Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.),

MIT Press and McGraw-Hill, 2009

[Liu85] Chung Laung Liu:

Elements of Discrete Mathematics McGraw-Hill, 1985

The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book cover the master theorem. Methods using the characteristic polynomial and generating functions can be found in [Liu85] Chapter 10.

6.5 Transformation of the Recurrence

119