17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex \mathbf{w}.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex \mathbf{w}.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

Each vertex can be incident to at most two edges (one from M and one from M^{\prime}). Hence, the connected components are alternating cycles or alternating path.

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

Each vertex can be incident to at most two edges (one from M and one from M^{\prime}). Hence, the connected components are alternating cycles or alternating path.

As $\left|M^{\prime}\right|>|M|$ there is one connected component that is a path P for which both endpoints are incident to edges from $M^{\prime} . P$ is an alternating path.

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M^{\prime}=M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M^{\prime}.

17 Augmenting Paths for Matchings

Proof

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. $M(z)$.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (z).
- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is

- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.
- $P_{1} \circ P_{1}^{\prime}$ is augmenting path in $M(z)$.

How to find an augmenting path？

Construct an alternating tree．

17 Augmenting Paths for Matchings

How to find an augmenting path?

Construct an alternating tree.

How to find an augmenting path?

Construct an alternating tree.

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 3: y is already contained in T as an odd vertex
ignore successor y

How to find an augmenting path?

Construct an alternating tree.

even nodes
odd nodes

Case 4: y is already contained in T as an even vertex
can't ignore y
does not happen in bipartite graphs

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
        for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    \(Q \leftarrow \emptyset ; Q\).append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
            augm (mate, parent, \(y\) );
            aug \(\leftarrow\) true;
            free - free -1 ;
            else
        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
                \(Q\).enqueue(mate[ \(y]\) );
```

$$
\operatorname{graph} G=\left(S \cup S^{\prime}, E\right)
$$

$$
\begin{aligned}
S & =\{1, \ldots, n\} \\
S^{\prime} & =\left\{1^{\prime}, \ldots, n^{\prime}\right\}
\end{aligned}
$$

Algorithm 23 BiMatch (G, match)

for $x \in V$ do mate $[x] \leftarrow 0$;

2: $r \leftarrow 0$; free $\leftarrow n$;
3: while free ≥ 1 and $r<n$ do
4: $\quad r \leftarrow r+1$
5: if mate $[r]=0$ then
start with an empty matching

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    2: \(r \leftarrow 0\); free \(\leftarrow n\);
    3: while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
        for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
            augm (mate, parent, \(y\) );
            aug \(\leftarrow\) true;
            free \(\leftarrow\) free -1 ;
            else
        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
                \(Q\).enqueue (mate \([y]\) );
```

free: number of unmatched nodes in S
r : root of current tree

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
4: \(\quad r \leftarrow r+1\)
5: if mate \([r]=0\) then
6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
7: \(\quad Q \leftarrow \emptyset ; Q\). append \((r) ;\) aug \(\leftarrow\) false;
8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
\(x \leftarrow Q\). dequeue();
for \(y \in A_{x}\) do
if mate \([y]=0\) then
    augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free \(\leftarrow\) free -1 ;
        else
        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
                \(Q\). enqueue(mate[ \(y]\) );
```

as long as there are unmatched nodes and we did not yet try to grow from all nodes we continue

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
\(r \leftarrow 0\); free \(\leftarrow n\);
while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    if mate \([r]=0\) then
        for \(i=1\) to \(n\) do \(\operatorname{parent}\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
        while \(a u g=\) false and \(Q \neq \emptyset\) do
            \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
            augm(mate, parent, \(y\) );
            aug \(\leftarrow\) true;
            free \(\leftarrow\) free -1 ;
            else
        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
                \(Q\). enqueue (mate \([y]\) );
```

r is the new node that we grow from.

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    if mate \([r]=0\) then
    for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    \(Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
    while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
            augm (mate, parent, \(y\) );
            aug - true;
            free - free -1 ;
            else
        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
                \(Q\).enqueue(mate[ \(y]\) );
```

If r is free start tree construction

```
Algorithm 23 BiMatch ( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    for \(i=1\) to \(n\) do \(\operatorname{parent}\left[i^{\prime}\right] \leftarrow 0\)
    \(Q \leftarrow \emptyset ; Q\).append \((r)\); aug \(\leftarrow\) false;
    while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free \(\leftarrow\) free -1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
        \(Q\).enqueue(mate[ \(y]\) );
```

Initialize an empty tree. Note that only nodes i^{\prime} have parent pointers.

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
\(r \leftarrow 0\); free \(\leftarrow n\);
while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
        for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    \(Q \leftarrow \emptyset ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    while \(\operatorname{aug}=\) false and \(Q \neq \emptyset\) do
                \(x \leftarrow Q\).dequeue();
for \(y \in A_{x}\) do
    if mate \([y]=0\) then
    augm (mate, parent, \(y\) );
        aug - true;
        free - free -1 ;
        else
        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
                \(Q\).enqueue(mate[ \(y]\) );
```

Q is a queue (BFS!!!).
aug is a Boolean that stores whether we already found an augmenting path.

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
\(r \leftarrow 0\); free \(\leftarrow n\);
while free \(\geq 1\) and \(r<n\) do
\(r \leftarrow r+1\)
5: if mate \([r]=0\) then
    for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    \(Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
    while aug \(=\) false and \(Q \neq \emptyset\) do
9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11:
    if mate \([y]=0\) then
    augm (mate, parent, \(y\) );
        aug - true;
        free \(\leftarrow\) free -1 ;
        else
        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
                \(Q\).enqueue(mate[ \(y]\) );
```

as long as we did not augment and there are still unexamined leaves continue...

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
7: \(\quad Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
\(x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11:
12: augm (mate, parent, \(y\) );
13: aug - true;
14: \(\quad\) free \(\leftarrow\) free - 1;
15: else
16: if parent \([y]=0\) then
17: \(\quad\) parent \([y] \leftarrow x\);
18:
\(Q\).enqueue(mate[ \(y]\) );
```

take next unexamined leaf

```
Algorithm 23 BiMatch ( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
\(r \leftarrow 0\); free \(\leftarrow n\);
while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
        for \(i=1\) to \(n\) do \(\operatorname{parent}\left[i^{\prime}\right] \leftarrow 0\)
    \(Q \leftarrow \emptyset\); \(Q\). append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while aug \(=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
12:
13:
14: \(\quad\) free \(\leftarrow\) free - 1 ;
15:
16:
17:
18:
    else
    if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
        \(Q\). enqueue(mate[ \(y]\) );
```

11:
if x has unmatched neighbour we found an augmenting path (note that $y \neq r$ because we are in a bipartite graph)

```
Algorithm 23 BiMatch ( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    if mate \([r]=0\) then
        for \(i=1\) to \(n\) do \(\operatorname{parent}\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\).append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
if mate \([y]=0\) then
    augm(mate, parent, \(y\) );
    aug - true;
    free - free -1 ;
    else
    if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
        \(Q\).enqueue(mate[ \(y]\) );
```

```
Algorithm 23 BiMatch ( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
\(r \leftarrow 0\); free \(\leftarrow n\);
while free \(\geq 1\) and \(r<n\) do
\(r \leftarrow r+1\)
    if mate \([r]=0\) then
        for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    \(Q \leftarrow \emptyset ; Q\). append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\). dequeue ();
10: \(\quad\) for \(y \in A_{x}\) do
        if mate \([y]=0\) then
            augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free \(\leftarrow\) free -1 ;
            else
                        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
                \(Q\).enqueue (mate \([y]\) );
```

setting $a u g=$ true ensures that the tree construction will not continue

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
        for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\).append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\). dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free - free - 1 ;
    else
    if parent \([y]=0\) then
    parent \([y] \leftarrow x\);
        \(Q\).enqueue(mate[ \(y]\) );
```

reduce number of free nodes

```
Algorithm 23 BiMatch( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
        for \(i=1\) to \(n\) do \(\operatorname{parent}\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\).append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
    9: \(\quad x \leftarrow Q\).dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11:
12: augm (mate, parent, \(y\) );
13: aug - true;
14: \(\quad\) free \(\leftarrow\) free - 1;
15:
16:
17:
18:
else
    if parent \([y]=0\) then
    parent \([y] \leftarrow x\);
    \(Q\).enqueue(mate[ \(y]\) );
```

if y is not in the tree yet

```
Algorithm 23 BiMatch ( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
        for \(i=1\) to \(n\) do \(\operatorname{parent}\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\).append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug - true;
        free \(\leftarrow\) free -1 ;
        else
        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
18:
    \(Q\).enqueue(mate[ \(y]\) );
```

...put it into the tree

```
Algorithm 23 BiMatch ( \(G\), match)
for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    \(r \leftarrow r+1\)
    5: if mate \([r]=0\) then
        for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
        \(Q \leftarrow \emptyset ; Q\).append \((r)\); aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \emptyset\) do
        \(x \leftarrow Q\).dequeue();
        for \(y \in A_{x}\) do
        if mate \([y]=0\) then
            augm (mate, parent, \(y\) );
            aug - true;
            free \(\leftarrow\) free -1 ;
            else
                        if parent \([y]=0\) then
                parent \([y] \leftarrow x\);
18:
                Q. enqueue(mate[ \(y]\) );
```

add its buddy to the set of unexamined leaves

