Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w.r.t.M.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path $w.r.t.\ M$.

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r..t. M.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w.r.t.M.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).
 - Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.
 - As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Proof.

- ⇒ If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Proof.

- \Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M' = M \oplus P$ with larger cardinality.
- \Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set $M' \oplus M$ (i.e., only edges that are in either M or M' but not in both).

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex $w.r.t.\ M$. Further let P denote an augmenting path $w.r.t.\ M$ and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

Proof

Assume there is an augmenting path P' w.r.t. M' starting at u.

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- ▶ If P' and P are node-disjoint, P' is also augmenting path w.r.t. $M(\mathcal{E})$.

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P_1 . Denote the sub-path of P' from u to u' with P'_1 .

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (∮).
- ▶ Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P_1'$ is augmenting path in M (3).

Construct an alternating tree.

even nodes odd nodes

Construct an alternating tree.

Construct an alternating tree.

Construct an alternating tree.

even nodes odd nodes

Case 3: *y* is already contained in *T* as an odd vertex

ignore successor y

Construct an alternating tree.

even nodes odd nodes

Case 4:

y is already contained in T as an even vertex

can't ignore \boldsymbol{y}

does not happen in bipartite graphs


```
Algorithm 23 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to n do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
```

for $\gamma \in A_{\chi}$ do

else

8: 9:

10:

11:

12:

13:

14.

15:

16:

17:

18:

while aug = false and $Q \neq \emptyset$ do

aug ← true;

graph $G = (S \cup S', E)$ $S = \{1, ..., n\}$ $S' = \{1', \dots, n'\}$

$$x \leftarrow Q$$
. dequeue();
for $y \in A_x$ do
if $mate[y] = 0$ then
augm($mate$, $parent$, y);
 $aug \leftarrow true$;
 $free \leftarrow free - 1$;
else
if $parent[y] = 0$ then
 $parent[y] \leftarrow x$;
 Q . enqueue($mate[y]$);

```
Algorithm 23 BiMatch(G. match)
1: for x \in V do mate[x] \leftarrow 0;
```

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$

else

- 5: **if** mate[r] = 0 **then**
- 6: **for** i = 1 **to** n **do** $parent[i'] \leftarrow 0$
- 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);

13:

14.

15:

16:

17:

18:

aug ← true;

 $free \leftarrow free - 1$:

if parent[y] = 0 then

 $parent[y] \leftarrow x$; Q. enqueue(mate[y]);

- while aug = false and $Q \neq \emptyset$ do

- empty matching

start with an

```
Algorithm 23 BiMatch(G, match)
```

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do

1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$;

- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to n do $parent[i'] \leftarrow 0$
- 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- while aug = false and $Q \neq \emptyset$ do 8: 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true; 14. $free \leftarrow free - 1$:
- 15: else 16:
- if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

free: number of unmatched nodes in S r: root of current tree

Algorithm 23 BiMatch(*G*, *match*)

1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;

6:

7:

8: 9:

10:

3: while $free \ge 1$ and r < n do

3: while
$$free \ge 1$$
 and $r < n$ do
4: $r \leftarrow r + 1$

5: **if**
$$mate[r] = 0$$
 then

for i = 1 **to** n **do** $parent[i'] \leftarrow 0$ $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;

while aug = false and $Q \neq \emptyset$ do

$$x \leftarrow Q$$
. dequeue(); for $y \in A_x$ do

if mate[y] = 0 then

11: augm(mate, parent, y);

12: 13: *aug* ← true;

14. $free \leftarrow free - 1$: 15: else

16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

as long as there are unmatched nodes and we did not yet try to grow from all nodes we continue

```
Algorithm 23 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
    if mate[r] = 0 then
 5:
 6:
           for i = 1 to n do parent[i'] \leftarrow 0
 7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
```

8: 9:

10:

11.

12:

13:

14.

15:

16:

17:

18:

while aug = false and $Q \neq \emptyset$ do

aug ← true;

 $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

else

 γ is the new node that we grow from.

```
if mate[y] = 0 then
   augm(mate, parent, y);
   free \leftarrow free - 1:
   if parent[y] = 0 then
      parent[y] \leftarrow x;
```

Q. enqueue(mate[y]);

```
Algorithm 23 BiMatch(G, match)

1: for x \in V do mate[x] \leftarrow 0;
2: r \leftarrow 0; free \leftarrow n;
3: while free \geq 1 and r < n do
4: r \leftarrow r + 1

5: if mate[r] = 0 then
6: for i = 1 to n do parent[i'] \leftarrow 0
7: Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
8: while aug = false and Q \neq \emptyset do
```

 $x \leftarrow O.$ dequeue():

if mate[y] = 0 then

 $free \leftarrow free - 1$:

aug ← true;

augm(mate, parent, y);

if parent[y] = 0 then

 $parent[y] \leftarrow x;$ Q. enqueue(mate[y]);

for $\gamma \in A_{\chi}$ do

else

9:

10:

11.

12:

13:

14.

15:

16:

17:

18:

If r is free start tree construction

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do

1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$;

4:
$$r \leftarrow r + 1$$

5: **if**
$$mate[r] = 0$$
 then
6: **for** $i = 1$ **to** n **do** $parent[i'] \leftarrow 0$

6: **for**
$$i = 1$$
 to n **do** $parent[i'] \leftarrow 0$
7: $Q \leftarrow \emptyset$; Q . append (r) ; $auq \leftarrow false$;

8: **while**
$$aug = false$$
 and $Q \neq \emptyset$ **do** 9: $x \leftarrow O$. dequeue();

- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true;
- 14. $free \leftarrow free - 1$: 15: else
- 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

Initialize an empty tree. Note that only nodes i'have parent pointers.

- 1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$ 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to n do $parent[i'] \leftarrow 0$
- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; 7:
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue(): 10: for $\gamma \in A_{\gamma}$ do
- 11: if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true; 14. $free \leftarrow free - 1$:
- 15: else 16:
- if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

Q is a queue (BFS!!!). aua is a Boolean that stores whether we already found an augmenting path.

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$

1: for $x \in V$ do $mate[x] \leftarrow 0$:

- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to n do $parent[i'] \leftarrow 0$ 7:
- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12:
- augm(mate, parent, y); 13:
- *aug* ← true; 14. $free \leftarrow free - 1$;
 - else
- 15: 16: if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

as long as we did not augment and there are still unexamined leaves continue...

```
Algorithm 23 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
           for i = 1 to n do parent[i'] \leftarrow 0
 7:
     Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
               x \leftarrow Q. dequeue();
9:
10:
               for \gamma \in A_{\gamma} do
```

else

if mate[y] = 0 then

 $free \leftarrow free - 1$:

aug ← true;

augm(mate, parent, y);

if parent[y] = 0 then

 $parent[y] \leftarrow x;$ Q. enqueue(mate[y]);

11:

12:

13:

14.

15:

16:

17:

18:

take next unexamined leaf

Algorithm 23 BiMatch(*G*, *match*) 1: **for** $x \in V$ **do** $mate[x] \leftarrow 0$:

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: **for** i = 1 **to** n **do** $parent[i'] \leftarrow 0$
- 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue(): 10: for $\gamma \in A_{\gamma}$ do
- 11: if mate[v] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true; 14. $free \leftarrow free - 1$:
- 15: else 16:
- if parent[y] = 0 then 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

if x has unmatched neighbour we found an augmenting path (note that $y \neq r$ because we are in a bipartite graph)

```
Algorithm 23 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to n do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
          while aug = false and Q \neq \emptyset do
8:
9:
              x \leftarrow O. dequeue():
10:
              for \gamma \in A_{\chi} do
11:
                  if mate[y] = 0 then
12:
                      augm(mate, parent, y);
13:
                      aug ← true;
14.
                      free \leftarrow free - 1:
15:
                  else
16:
                      if parent[y] = 0 then
```

 $parent[y] \leftarrow x;$ Q. enqueue(mate[y]);

17:

18:

do an augmentation...

Algorithm 23 BiMatch(*G*, *match*) 1: for $x \in V$ do $mate[x] \leftarrow 0$:

- 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to n do parent[i'] $\leftarrow 0$ 7:
- $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false; while aug = false and $Q \neq \emptyset$ do 8:
- 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do 11:
- if mate[y] = 0 then
- 12: augm(mate, parent, y);
- 13: *aug* ← true; 14: $free \leftarrow free - 1$:
 - else if parent[y] = 0 then
- 15: 16: 17: $parent[y] \leftarrow x$; Q. enqueue(mate[y]); 18:

setting aug = trueensures that the tree construction will not continue

```
Algorithm 23 BiMatch(G, match)

1: for x \in V do mate[x] \leftarrow 0;
2: r \leftarrow 0; free \leftarrow n;
3: while free \geq 1 and r < n do
4: r \leftarrow r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i'] \leftarrow 0
7: Q \leftarrow \emptyset; Q = ppend(r); qaq \leftarrow false;
```

8: 9:

10:

11:

12:

18:

reduce number of free nodes

 $x \leftarrow O.$ dequeue():

for $\gamma \in A_{\chi}$ do

while aug = false and $Q \neq \emptyset$ do

if mate[y] = 0 then

augm(mate, parent, y);

Q. enqueue(mate[y]);

```
Algorithm 23 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
   for i = 1 to n do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
          while aug = false and Q \neq \emptyset do
8:
9:
              x \leftarrow O. dequeue():
10:
              for \gamma \in A_{\chi} do
11:
                  if mate[y] = 0 then
12:
                      augm(mate, parent, y);
13:
                      aug ← true;
14.
                      free \leftarrow free - 1:
```

else

if parent[y] = 0 then $parent[y] \leftarrow x$;

Q. enqueue(mate[y]);

15: 16:

17:

18:

if y is not in the tree yet

```
Algorithm 23 BiMatch(G, match)
 1: for x \in V do mate[x] \leftarrow 0:
 2: r \leftarrow 0; free \leftarrow n;
 3: while free \ge 1 and r < n do
 4: r \leftarrow r + 1
 5: if mate[r] = 0 then
6:
          for i = 1 to n do parent[i'] \leftarrow 0
7:
    Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
           while aug = false and Q \neq \emptyset do
8:
9:
               x \leftarrow O. dequeue():
10:
               for \gamma \in A_{\chi} do
11:
                   if mate[y] = 0 then
```

...put it into the tree

```
8: while aug = \text{false and } Q \neq \emptyset do
9: x \leftarrow Q. dequeue();
10: for y \in A_x do
11: if mate[y] = 0 then
12: augm(mate, parent, y);
13: aug \leftarrow \text{true};
14: free \leftarrow free - 1;
15: else
16: if parent[y] = 0 then
17: parent[y] \leftarrow x;
18: Q. enqueue(mate[y]);
```

- 1: for $x \in V$ do $mate[x] \leftarrow 0$: 2: $r \leftarrow 0$; free $\leftarrow n$;
- 3: while $free \ge 1$ and r < n do
- 4: $r \leftarrow r + 1$
- 5: **if** mate[r] = 0 **then**
- 6: for i = 1 to n do parent[i'] $\leftarrow 0$
- 7: $Q \leftarrow \emptyset$; Q. append(r); aug \leftarrow false;
- while aug = false and $Q \neq \emptyset$ do 8: 9: $x \leftarrow O.$ dequeue():
- 10: for $\gamma \in A_{\chi}$ do
- 11: if mate[y] = 0 then
- 12:
- augm(mate, parent, y); 13: *aug* ← true;
- 14. $free \leftarrow free - 1$: 15: else
- 16: if parent[v] = 0 then $parent[y] \leftarrow x$; 17: O. enqueue(mate[v]): 18:

of unexamined leaves

add its buddy to the set