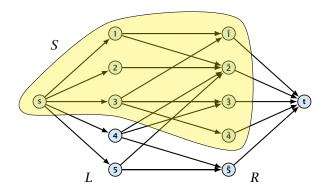
Weighted Bipartite Matching/Assignment


- ▶ Input: undirected, bipartite graph $G = L \cup R, E$.
- ▶ an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- assume that there is an edge between every pair of nodes $(\ell,r) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

Theorem 1 (Halls Theorem)

A bipartite graph $G=(L\cup R,E)$ has a perfect matching if and only if for all sets $S\subseteq L$, $|\Gamma(S)|\geq |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- \Rightarrow For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let S denote a minimum cut and let $L_S \not \equiv L \cap S$ and $R_S \not \equiv R \cap S$ denote the portion of S inside L and R, respectively.
 - ▶ Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - ▶ This gives $R_S \ge |\Gamma(L_S)|$.
 - ▶ The size of the cut is $|L| |L_S| + |R_S|$.
 - ▶ Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \in \mathbb{R}$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

$$x_u + x_v \ge w_e$$
 for every edge $e = (u, v)$.

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e=(u,v) for which $w_e=x_u+x_v$.
- ▶ Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Algorithm Outline

Reason:

▶ The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

• Any other perfect matching M (in G, not necessarily in $H(\vec{x})$) has

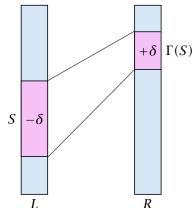
$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u + x_v) = \sum_v x_v \ .$$

Algorithm Outline

What if you don't find a perfect matching?

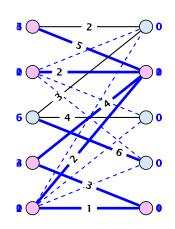
Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:


- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

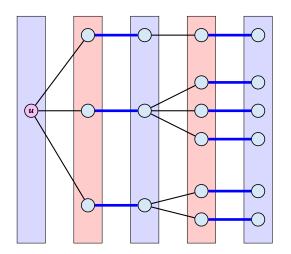
Changing Node Weights


Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- ▶ Only edges from S to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.

Edges not drawn have weight 0.

$$\delta = 1 \ \delta = 1$$


How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- ▶ This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L-S and $R-\Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

How to find an augmenting path?

Construct an alternating tree.

How do we find *S*?

- Start on the left and compute an alternating tree, starting at any free node u.
- ▶ If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $|V_{\rm odd}| = |\Gamma(V_{\rm even})| < |V_{\rm even}|$, and all odd vertices are saturated in the current matching.

- ▶ The current matching does not have any edges from $V_{\rm odd}$ to $L \setminus V_{\rm even}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\rm even}$ to a node outside of $V_{\rm odd}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}(n^2)$ (keeping track of the tight edges).
- An augmentation takes at most O(n) time.
- In total we obtain a running time of $\mathcal{O}(n^4)$.
- ▶ A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.