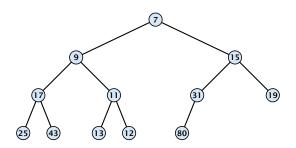
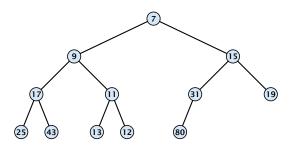


Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.



- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.



- **minimum():** return the root-element. Time $\mathcal{O}(1)$.
- ▶ **is-empty():** check whether root-pointer is null. Time $\mathcal{O}(1)$.

- **minimum():** return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.

- **minimum():** return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.

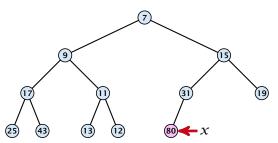
Maintain a pointer to the last element x.

We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.

9 (1) (3) (1) (19)

Maintain a pointer to the last element x.

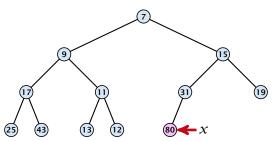
- ▶ We can compute the predecessor of x (last element when x is deleted) in time $O(\log n)$.
 - go up until the last edge used was a right edge. go left; go right until you reach a leaf
 - if you hit the root on the way up, go to the rightmost element



Maintain a pointer to the last element x.

We can compute the predecessor of x (last element when x is deleted) in time O(log n). go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

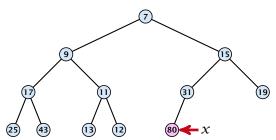


Maintain a pointer to the last element x.

We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element



Maintain a pointer to the last element x.

We can compute the successor of x (last element when an element is inserted) in time $O(\log n)$

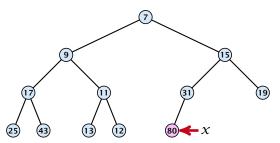
9 11 31 13 12 80 7

Maintain a pointer to the last element x.

• We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

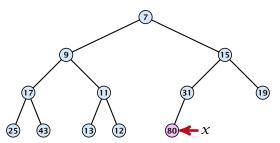
if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;



Maintain a pointer to the last element x.

We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$. go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;

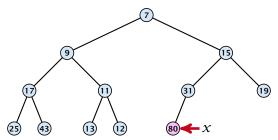


Maintain a pointer to the last element x.

• We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$.

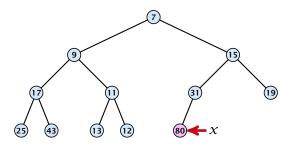
go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;

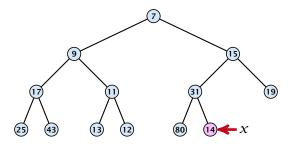


1. Insert element at successor of x.

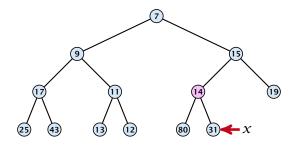
2. Exchange with parent until heap property is fulfilled.



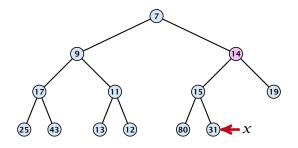
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



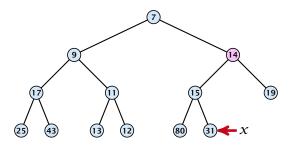
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



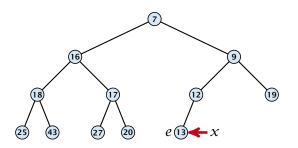
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



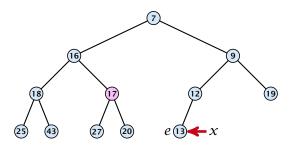
- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.



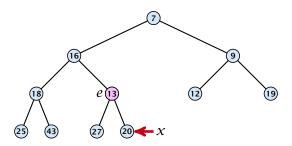
- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- 2. Restore the heap-property for the element e.



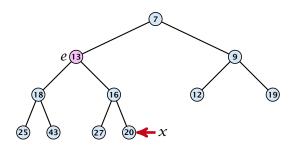
- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element e.



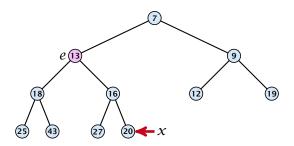
- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element e.



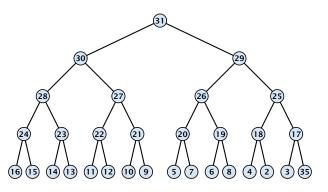
- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element e.



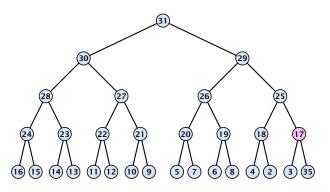
- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element e.



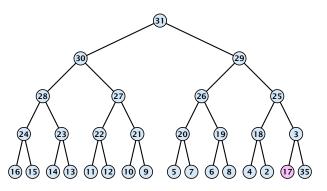
- **minimum():** return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time O(1).
- ▶ **insert**(k): insert at x and bubble up. Time $O(\log n)$.
- ▶ **delete**(h): swap with x and bubble up or sift-down. Time $O(\log n)$.



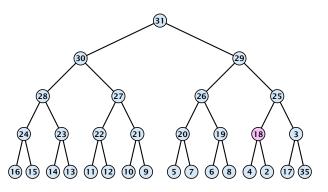
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$

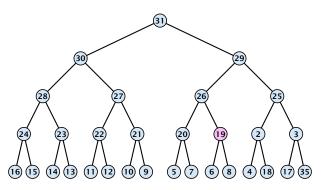


$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$

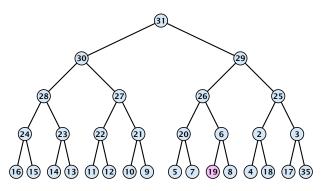
We can build a heap in linear time:



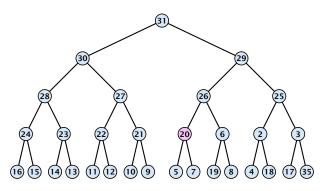
 $\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$



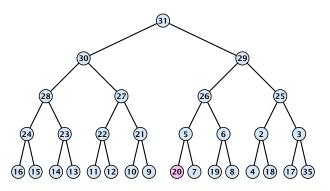
$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



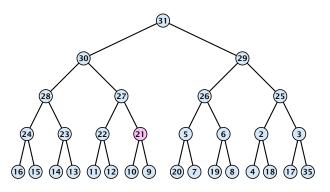
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



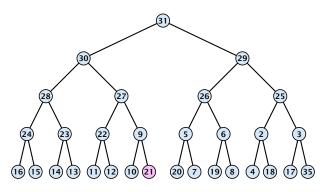
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



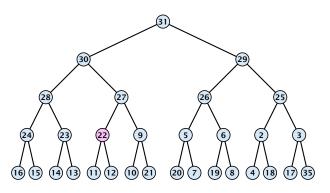
$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



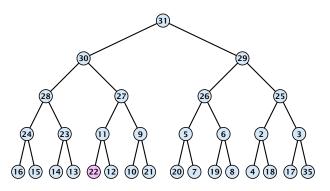
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



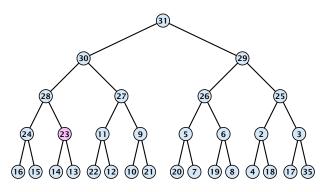
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



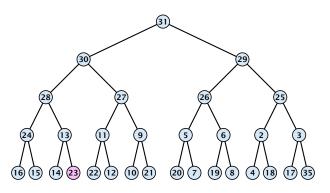
$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



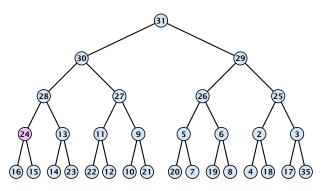
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$

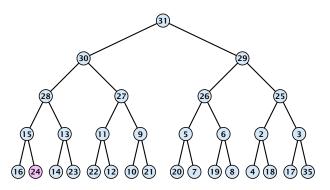


$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$

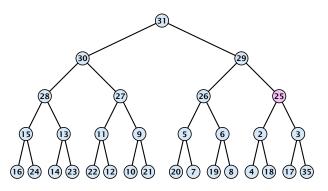


$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$

We can build a heap in linear time:

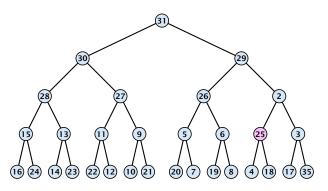


 $\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$



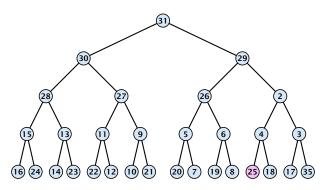
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$

We can build a heap in linear time:

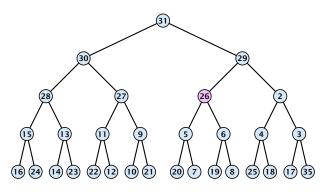


 $\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^{h}) = \mathcal{O}(n)$

We can build a heap in linear time:

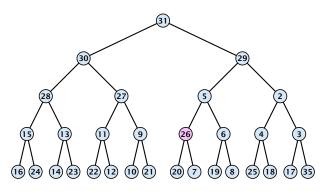


 $\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$

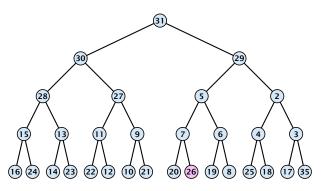


$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^{h}) = \mathcal{O}(n)$$

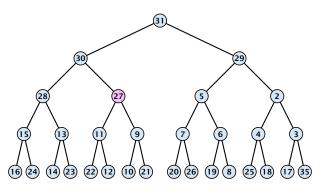
We can build a heap in linear time:



 $\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$



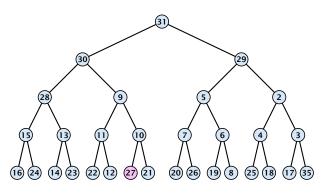
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



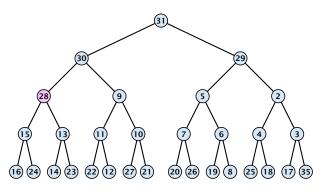
$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



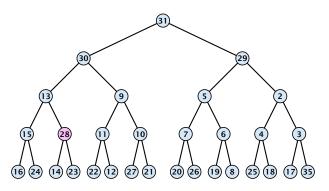
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



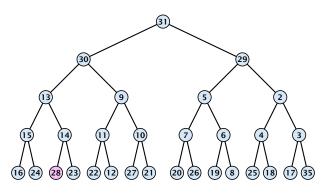
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^{h}) = \mathcal{O}(n)$$



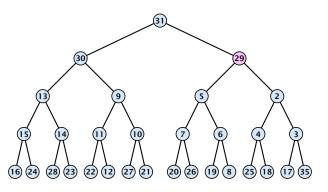
$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



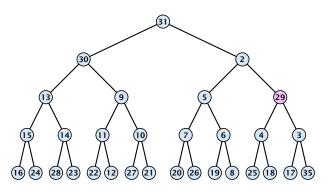
$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



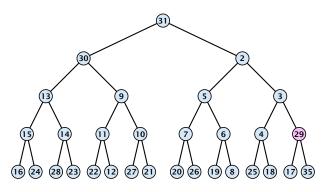
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



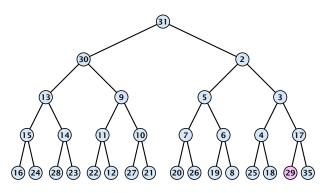
$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



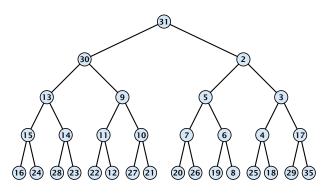
$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^{h}) = \mathcal{O}(n)$$



$$\sum_{\text{levels }\ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$



$$\sum_{\text{levels } \ell} 2^{\ell} \cdot (h - \ell) = \mathcal{O}(2^h) = \mathcal{O}(n)$$

Operations:

- **minimum():** Return the root-element. Time O(1).
- is-empty(): Check whether root-pointer is null. Time $\mathcal{O}(1)$.
- ▶ **insert**(k): Insert at x and bubble up. Time $O(\log n)$.
- delete(h): Swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.
- **build** (x_1, \ldots, x_n) : Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ▶ The right child of *i*-th element is at position 2i + 2i

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ► The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

