
Technische Universität München WS 2015/16
Institut für Informatik Worksheet
Theoretische Informatik

Fundamental Algorithms

Exercise 1 – Hypergraphs

A hypergraph extends the concept of a graph in the sense that edges are allowed to connect an
arbitrary number of vertices (instead of exactly two). Hence, a hypergraph is defined as a tuple
(V, H), where V is a set of vertices and H is a set of hyperedges, where H ⊂ P(H) \ {∅}, with
P(H) the power set (i.e., the set of all possible subsets) of H.

Let’s assume a hypergraph where V is a set of authors, and each hyperedge h ∈ H contains all
authors of a specific scientific article.

Exercise 1a)

Give a suitable definition of the concept of a path in a hyperedge.

Solution:

We may define that a path (of length n) exists between two vertices v and w in a hypergraph, if:

• We have a sequence of hyperedges h1, h2, h3, . . . , hn

• and a sequence of vertices v0, v1, v2, . . . , vn (where v = v0 and w = vn)

• such that v0, v1 ∈ h1 and v1, v2 ∈ h2 and . . . vn−1, vn ∈ hn

Exercise 1b)

Given is the hypergraph S = (VS, HS) of “all” scientific articles. The Erdös number Er(a) of an
author a ∈ VS is defined as the length of the shortest path in S that connects the specific vertex
e ∈ V (e corresponds to the author Paul Erdös) to a. Write down an algorithm to determine
Er(a).

Solution:

For a (non-directed, non-weighted) graph, breadth-first traversal will find the shortest path from
a given root node to any reachable node in the graph. Hence, we adapt breadth-first search for
hypergraphs. Instead of using an array Mark that just labels vertices as already visited, we use

1

an array Erd that contains the Erdös number of a already visited vertices (non-visited vertices
will be initialized to contain −1 in the beginning).

BF Erdos (e : HyperNode , x : HyperNode , n : Integer) : Integer {
/ / Input : e i s t h e v e r t e x t h a t c o r r e s p o n d s t o Erdos
/ / x i s t h e v e r t e x t h a t c o r r e s p o n d s t o t h e a u t h o r
/ / n i s t h e number o f nodes o f t h e gr ap hs
/ / Output : Erdos number o f x (o r −1 i f no pa th i f found)

/ / use an a r r a y Erd t o mark v i s i t e d nodes and t o s t o r e t h e i r Erdos number
Array Erd [1 . . n] ;
for i from 1 to n do { Erd [i] = −1 } ;
Erd [e . key] = 0 ; / / Erdos has Erdos number 0

/ / i n i t i a l i z e a queue ’ a c t i v e ’ f o r b r e a d t h− f i r s t t r a v e r s a l
Queue a c t i v e = {e } ; / / i n i t i a l node i s e = Erdos

while a c t i v e <> {} do
/ / t a k e f i r s t v e r t e x from queue :
v = remove (a c t i v e) ;
/ / i f v e r t e x i s a u t h o r x then r e t u r n Erdos number
i f v = x then return Erd [v . key] ;
/ / d e t e r m i n e a l l a u t h o r s wi th a j o i n t p u b l i c a t i o n
coAuthors = {} ; / / s t a r t wi th empty s e t
f o r a l l a r t i c l e A u t h o r s in v . hyperedges do

coAuthors = coAuthors union a r t i c l e A u t h o r s
end do ;
/ / expand graph s e a r c h by a l l c o a u t h o r s
f o r a l l author in coAuthors do

i f Erd [author . key] < 0
then / / s e t Erdos number o f a u t h o r

Erd [author . key] = Erd [v . key] + 1 ;
append (ac t ive , author) ;

end i f ;
end do ;

end while ;
/ / a t t h i s p o i n t , no pa th has been found −> no Erdos number :
return −1;

}

In this algorithm, HyperNode needs to be a suitable data structure to represent a node of a
hypergraph. Here, we assume that a HyperNode represent one vertex and stores the set of
hyperedges that contain this vertex (or a reference to these hyperedges). Each hyperedge is a set
of vertices.

Exercise 1c)

Try to formulate the problem of 1b) as a graph problem!

2

Solution:

There is a simple solution, once we realize that it is insignificant for the Erdös number which
articles are actually responsible for the connection. Hence, we may define a graph VS, ES, where
two authors a, b ∈ VS are connected by an edge, i.e. (a, b) ∈ ES, iff there exists a hyperedge HS
with a ∈ HS and b ∈ HS. Then we can use the regular breadth-first traversal on graphs.

However, scientists who are interested in their Erdös number actually do want to know which
articles define the connection, so we need to set up a different graph (V, E):

• the nodes are given as V := VS ∪ HS, i.e., each author and each articles define a vertex;

• E contains an edge between an author a ∈ VS and an article p ∈ HS, iff a was an author of
p, i.e., a ∈ p.

Now, a shortest-path search in the resulting graph (using breadth-first search) will deliver the
Erdös number and the connecting papers. Note that the constructed graph is an example for a
bipartite graph (see Exercise 2).

Exercise 2 – Bipartite Graphs

The following exercise is based on the concept of so-called bipartite graphs:

A graph (V, E) is called bipartite, if there exist V0 and V1 with V0 ⊂ V and V1 = V \ V0,
and for all (v, w) ∈ E there is either v ∈ V0 and w ∈ V1, or w ∈ V0 and v ∈ V1.

To put it simpler: for a bipartite graph, it is possible to attribute each node v ∈ V with one of
two “colors”, say red and black, such that any edge e ∈ E will connect a red and a black node
(and no edge will connect edges of the same color).

Exercise 2a

Give a prove to the following claim:

If a graph (V, E) is bipartite, then it cannot contain an odd cycle (i.e., a cycle of odd length).

Solution:

We proof this by contradiction:
Assume that a bipartite graph contains a cycle (v0, v1), (v1, v2), . . . , (vn−1, vn = v0), where n is
odd. Assume that v0 is coloured black, then v1 has to be red (as it is connected to the black v0),
v2 has to be black (as it is connected to the red v1), etc. Thus all v2i are black and all v2i+1 are
red. However, if n is odd, i.e. n = 2i + 1 for some i, then vn is red, and thus cannot be equal to
v0, which is black. This contradicts our initial assumption.

3

Exercise 2b

Try to find an algorithm that tests whether a given graph is bipartite.

Hint: you can build such an algorithm by extending one of the graph traversals we discussed in the
lecture!

Solution:

We can change breadth-first traversal into a colouring algorithm. Assume that we have n nodes
with distinct key values {1, . . . , n}, then we can use an array M to store the colouring status: 0
means “uncoloured”, 1 is for black, and 2 for red.

B F b i p a r t i t e (x : Node) {
b i p a r t i t e = t rue ;
! u s e s queue o f ” a c t i v e ” nodes
Queue a c t i v e = { x } ;
Mark [x . key] = 1 ;
while a c t i v e <> {} do

! remove f i r s t node from queue
V = remove (a c t i v e) ;
! d e t e r m i n e t h e o p p o s i t e c o l o u r o f V:
i f Mark [V. key]=1 then newcolour=2 e lse newcolour=1 end i f ;
! v i s i t a l l nodes W c o n n e c t t o V by an edge (V,W) :
f o r a l l (V,W) in V. edges do

! a s s i g n a c o l o u r t o W, i f i t i s s t i l l u n c o l o u r e d
i f Mark [W. key] = 0
then

Mark [W. key] = newcolour ;
! c h e c k a l l nodes c o n n e c t e d t o W f o r a c o l o u r c o n f l i c t :
f o r a l l (W, Y) in V. edges do

i f Mark [y . key] = newcolour then b i p a r t i t e = f a l s e ;
end do ;
! f o r BFT : append W t o queue o f a c t i v e nodes :
append (ac t ive , W) ;

end i f ;
end do ;

end while ;
return b i p a r t i t e ;

}

Note: instead of the assignment bipartite = false, we could also immediately return false, and
thus not necessarily traverse the entire graph (and thus be much more efficient). However, we
implement a full traversal here, as we will discuss a quite similar algorithm in the next exercise.

4

Exercise 2c

Try to give a prove for the following claim (using the algorithm from Exercise 2):

If a graph (V, E) is not bipartite, then it will contain an odd cycle.

Solution:

The algorithm of Exercise 3 contains a standard breadth-first search; we can simply change it by
assigning a distance to the starting node s to each node, instead of marking it as black or red.
We obtain the following algorithm:

BFdistance (x : Node) {
! a r r a y Mark c o n t a i n s v a l u e −1 in e v e r y e l e m e n t a t s t a r t
b i p a r t i t e = t rue ;
! u s e s queue o f ” a c t i v e ” nodes
Queue a c t i v e = { x } ;
Mark [x . key] = 0 ;
while a c t i v e <> {} do

! remove f i r s t node from queue
V = remove (a c t i v e) ;
! d e t e r m i n e t h e o p p o s i t e c o l o u r o f V:
d i s t := Mark [V. key] ;
! v i s i t a l l nodes W c o n n e c t t o V by an edge (V,W) :
f o r a l l (V,W) in V. edges do

! a s s i g n a d i s t a n c e t o W, i f i t i s s t i l l u n c o l o u r e d
i f Mark [W. key] = −1
then

Mark [W. key] = d i s t +1;
! f o r BFT : append W t o queue o f a c t i v e nodes :
append (ac t ive , W) ;

end i f ;
end do ;

end while ;
return b i p a r t i t e ;

}

Note: as 0 is a valid distance (which is correct for the start node x), we have to use a different
value (which is -1) to mark nodes that have not yet been visited.

Due to the identical breadth-first traversal structure of algorithms BFbipartite and BFdistance, it
is obvious that nodes with an odd distance are marked red, while nodes with an even distance
are marked black.

We now have two opposite situations:

1. There is no edge in the graph that connects two nodes with even distance (which would
both be marked black by algorithm 2), and no edge that connects two nodes with odd
distance (which would be red). In that case, we have a bipartite graph.

2. There is an edge in the graph that connects two nodes with odd or two nodes with even

5

distances. As both nodes are connected to the starting node (via different paths) the edge
between them generates a cycle. The length of this cycle is 1 plus either the sum of two
odd numbers or the sum of two even numbers. In any case, the cycle length is an odd
number.

Hence, a graph can either be bipartite or have an odd cycle.

Reference for Exercises 1a–1c:
Kleinberg, Tardos: Algorithm Design, Pearson Education, 2006.

Exercise 2d

Consider the following graph obtained from a Cartesian discretization mesh. Is this a bipartite
graph?

xi,jxi−1,j xi+1,j

xi,j+1

xi,j−1

hx

hy

Solution:

This algorithm is, of course, inspired by the so-called red-black ordering frequently used in nu-
merical algorithms (such as the red-black Gauß-Seidel relaxation). If we colour the grid points
in a red-black checkerboard fashion. then the four direct (left, right, top, down) neighbours of
each black node will be red (and vice versa). Consider a system of equations where unknowns
(the xij in the image) only depend on their direct neighbour. For relaxation methods, an impor-
tant consequence is then that for an update of a “red” unknown xij, only the values of “black”
unknowns (in addition to xij itself) are accessed. Hence, all red unknowns may be updated in
parallel.

6

