Fundamental Algorithms 1

- Solution Examples -

Exercise 1

Prove (by induction over *n*) that $\frac{1}{3}n^2 + 5n + 30 \in O(n^2)$ for all $n \in \mathbb{N}^+$.

Solution:

(Note: we wouldn't have to prove by induction, but it's a simple case to practice it.)

$$f := \frac{1}{3}n^2 + 5n + 30 \in O(n^2) \qquad \Leftrightarrow \qquad \exists c > 0 \exists n_0 \forall n \ge n_0 : f(n) \le cn^2$$

Let c := 100, $n_0 := 1$.

Base case: $n = n_0 = 1$

$$\frac{1}{3} + 5 + 30 = 35\frac{1}{3} \le 100$$

Induction hypothesis: For some $n \in \mathbb{N}$: $f(n) \leq 100n^2$

Inductive step:

$$f(n+1) = \frac{1}{3}(n+1)^2 + 5(n+1) + 30$$

= $\frac{1}{3}(n^2 + 2n + 1) + 5(n+1) + 30$
= $f(n) + \frac{2}{3}n + \frac{16}{3}$
 $\stackrel{ih}{\leq} 100n^2 + \frac{2}{3}n + \frac{16}{3}$
 $\leq 100n^2 + 200n + 100$
= $100(n+1)^2$

q.e.d.

Note: we chose a pretty large *c* for this prove – you should re-do this proof with smaller values for *c* (such as c = 1) and see what happens.

Exercise 2

- (a) Compare the growth of the following functions using the o-, O-, and Θ -notation:
 - 1. *n* log *n*
 - 2. n^l for all $l \in \mathbb{N}$
 - 3. 2^{*n*}
- (b) Try to give a simple characterization of the growth of the following expressions using the Θ-notation:

1)
$$\sum_{i=1}^{n} \frac{1}{i}$$
 2) $\log(n!)$

Hint for $\log(n!)$: try to prove $n^{\frac{n}{2}} \le n! \le n^n$ first!

Solution:

(a) $n^l \in o(2^n)$ for all $l \in \mathbb{N}$, because by de l'Hôpital's rule:

$$\lim_{n \to \infty} \frac{n^l}{2^n} = \lim_{n \to \infty} \frac{l \cdot n^{l-1}}{2^n \cdot \ln 2} = \lim_{n \to \infty} \frac{l \cdot (l-1) \cdot n^{l-2}}{2^n \cdot (\ln 2)^2} = \dots = \lim_{n \to \infty} \frac{l!}{2^n \cdot (\ln 2)^l} = 0$$

Therefore, $n^l \in O(2^n)$ for all $l \in \mathbb{N}$.

Obviously, $n^1 \in o(n \log n)$ and $n^1 \in O(n \log n)$, but for $l \ge 2$:

$$\lim_{n \to \infty} \frac{n \ln n}{n^l} = \lim_{n \to \infty} \frac{\ln n}{n^{l-1}} = \lim_{n \to \infty} \frac{1}{n \cdot (l-1) \cdot n^{l-2}} = 0$$

Therefore $n^l \in \omega(n \log n)$ for all $l \ge 2$. This also holds for any real l > 1. As a consequence, $n \log n \in o(2^n)$.

(b) 1)
$$\sum_{i=1}^{n} \frac{1}{i} \in \Theta(\ln n)$$
:

Consider the functions $u(x) := \frac{1}{\lfloor x \rfloor}$ and $l(x) := \frac{1}{\lceil x \rceil}$, then:

$$l(x) \le \frac{1}{x} \le u(x) \quad \Rightarrow \quad \int_{1}^{n} l(x) \, dx \le \int_{1}^{n} \frac{1}{x} \, dx \le \int_{1}^{n} u(x) \, dx$$
$$\Rightarrow \quad \sum_{i=2}^{n} \frac{1}{i} \le \ln n - \ln 1 \le \sum_{i=1}^{n-1} \frac{1}{i}$$

(draw a graph of u(x) and l(x) to see why the integrals are given by these sums).

Thus, $\ln n \le \sum_{i=1}^{n-1} \frac{1}{i} \le \sum_{i=1}^{n} \frac{1}{i}$, and therefore $\ln n \in O\left(\sum_{i=1}^{n} \frac{1}{i}\right)$. As $2 \cdot \sum_{i=2}^{n} \frac{1}{i} = 2 \cdot \left(\frac{1}{2} + \dots + \frac{1}{n}\right) > 1$, we know that $3 \sum_{i=2}^{n} \frac{1}{i} = 2 \sum_{i=2}^{n} \frac{1}{i} + \sum_{i=2}^{n} \frac{1}{i} > 1 + \sum_{i=2}^{n} \frac{1}{i} = \sum_{i=1}^{n} \frac{1}{i}$, and, therefore,

$$\sum_{i=1}^n \frac{1}{i} < 3\sum_{i=2}^n \frac{1}{i} \le 3\ln n \quad \Rightarrow \quad \sum_{i=1}^n \frac{1}{i} \in O(\ln n), \quad \text{q.e.d.}$$

2) Using $n^{\frac{n}{2}} \leq n! \leq n^n$, we get:

$$\ln n^{\frac{n}{2}} \le \ln(n!) \le \ln n^n \quad \Rightarrow \quad \frac{n}{2} \ln n \le \ln(n!) \le n \ln n,$$

which leads directly to the result $\ln(n!) \in \Theta(n \ln n)$.

Proof for $n^{\frac{n}{2}} \leq n! \leq n^n$:

It is obvious that $n! = 1 \cdot 2 \cdot \ldots \cdot n \leq n \cdot n \cdot \ldots \cdot n = n^n$. To prove $n^{\frac{n}{2}} \leq n!$, or $n^n \leq (n!)^2$, we show that $\frac{(n!)^2}{n^n} \geq 1$:

$$\frac{(n!)^2}{n^n} = \frac{n!}{n^n} \cdot n! = \prod_{i=0}^{n-1} \frac{n-i}{n} \cdot \prod_{i=0}^{n-1} (i+1) = \prod_{i=0}^{n-1} \frac{(n-i)(i+1)}{n}$$

and $(n-i)(i+1) = -i^2 + ni - i + n = n + i(n-1-i) \ge n$. Therefore, all factors of the product are ≥ 1 . Consequently, the product itself is ≥ 1 .

Exercise 3

Let l(x) be the number of bits of the representation of x in the binary system. Prove:

$$\sum_{i=1}^n l(i) \in \Theta(n \log n)$$

Solution:

We need the following equalities:

- $\sum_{i=1}^{n} \log i = \log \left(\prod_{i=1}^{n} i \right) = \log(n!) \in \Theta(n \log n)$, (see exercise 1(b), part 2!), and
- $l(i) = \lfloor \log_2 i \rfloor + 1$ (if the binary representation of a number has *l* bits, the respective number *i* will be between 2^{l-1} and $2^l 1$).

If we can show that

$$c_1 \log_2 i \le \lfloor \log_2 i \rfloor \le \log_2 i$$

for some constant $0 < c_1 < 1$ (the second inequality is a trivial result of the definition of $\lfloor \rfloor$), and use the transformation

$$\sum_{i=1}^{n} l(i) = \sum_{i=1}^{n} \left(\lfloor \log_2 i \rfloor + 1 \right) = n + \sum_{i=1}^{n} \lfloor \log_2 i \rfloor,$$

we get

$$c_1\left(n+\sum_{i=1}^n \log_2 i\right) \le \sum_{i=1}^n l(i) \le n+\sum_{i=1}^n \log_2 i \quad \Rightarrow \quad \sum_{i=1}^n l(i) \in \Theta(n\log n)$$

We still have to prove that $c_1 \log_2 i \leq \lfloor \log_2 i \rfloor$ for some c_1 : For $i \geq 3$, we can choose c_1 , such that $i^{c_1} < \frac{i}{2}$ (choose $c_1 := \frac{1}{4}$, e.g.). Then

$$c_1 \log_2 i = \log_2 \left(i^{c_1} \right) < \log_2 \frac{i}{2} = \log_2 i - 1 < \lfloor \log_2 i \rfloor.$$

As the inequality is also correct for $i \in \{1, 2\}$, we are finished.

Exercise 4

Prove that Θ defines an equivalence relation on the set of functions $\{f \mid f: \mathbb{N} \to \mathbb{R}\}$. Use that $(f, g) \in \Theta \Leftrightarrow f \in \Theta(g)$

Solution:

We define the relation Θ by $(f,g) \in \Theta :\Leftrightarrow f \in \Theta(g)$. To show that Θ is an equivalence relation, we have to prove that:

- Θ is **reflexive**: as $f \in \Theta(f)$ (e.g., choose constants $c_1 := \frac{1}{2}$, and $c_2 := \frac{3}{2}$), by definition $(f, f) \in \Theta$;
- Θ is **symmetric**: if $f \in \Theta(g)$, then

-
$$f \in O(g) \Rightarrow g \in \Omega(f)$$

-
$$f \in \Omega(g) \Rightarrow g \in O(f)$$

Therefore, by definition $g \in \Theta(f)$;

• Θ is **transitive**:

if $f \in \Theta(g)$, and $g \in \Theta(h)$, then, there are constants c_1 , c_2 , c_3 , and c_4 , such that for sufficiently large n

$$-c_1 f(n) \le g(n) \le c_2 f(n)$$

 $-c_3g(n) \le h(n) \le c_4g(n)$

Therefore, $c_1c_3f(n) \le h(n) \le c_2c_4h(n)$ which leads to $f \in \Theta(h)$.