Fundamental Algorithms 3

\author{

- Solution Examples -
}

Exercise 1

Consider a partitioning algorithm that, in the worst case, will partition an array of m elements into two partitions of size $\lfloor\epsilon m\rfloor$ and $\lceil(1-\epsilon) m\rceil$, where ϵ is fixed, and $0<\epsilon<1$. Show that a quicksort algorithm based on this partitioning has a worst-case complexity of $O(n \log n)$.

Solution:

Again, we will only count comparisons between array elements.
Using that the partitioning step will require at most n comparisons, we get the following recurrence for the necessary number $C(n)$ of comparisons:

$$
\begin{aligned}
& C(1)=0 \\
& C(n)=C(\epsilon n)+C((1-\epsilon) n)+n
\end{aligned}
$$

We guess $C(n):=a n \log _{2} n+b$ as the solution, and try to find constants a and b such that the recurrence is satisfied:
case $n=1$:

$$
C(1)=a \cdot 1 \cdot \log _{2} 1+b=0 \quad \Leftrightarrow b=0,
$$

hence, $C(n)=a n \log _{2} n$.
case $n>1$: We insert our guess into the recurrence:

$$
\begin{aligned}
a n \log _{2} n=C(n)= & C(\epsilon n)+C((1-\epsilon) n)+n \\
\Leftrightarrow \quad \text { an } \log _{2} n= & a \epsilon n \log _{2}(\epsilon n)+a(1-\epsilon) n \log _{2}((1-\epsilon) n)+n \\
\Leftrightarrow \quad \text { an } \log _{2} n= & a \epsilon n\left(\log _{2} \epsilon+\log _{2} n\right)+a(1-\epsilon) n\left(\log _{2}(1-\epsilon)+\log _{2} n\right)+n \\
\Leftrightarrow \quad \text { an } \log _{2} n= & a \epsilon n \log _{2} \epsilon+a \epsilon n \log _{2} n+ \\
& a(1-\epsilon) n \log _{2}(1-\epsilon)+a(1-\epsilon) n \log _{2} n+n \\
\Leftrightarrow \quad \text { an } \log _{2} n= & a \epsilon n \log _{2} \epsilon+a \epsilon n \log _{2} n+
\end{aligned}
$$

$$
\begin{aligned}
& \\
& \Leftrightarrow \quad 0 \quad a n \log _{2}(1-\epsilon)-a \epsilon n \log _{2}(1-\epsilon)+a n \log _{2} n-a \epsilon n \log _{2} n+n \\
& \Leftrightarrow \quad 0=a n \log _{2} \epsilon+a n \log _{2}(1-\epsilon)-a \epsilon n \log _{2}(1-\epsilon)+n \\
& \Leftrightarrow \quad a=\frac{a n\left(\epsilon \log _{2} \epsilon+(1-\epsilon) \log _{2}(1-\epsilon)\right)+n}{\epsilon \log _{2} \epsilon+(1-\epsilon) \log _{2}(1-\epsilon)}
\end{aligned}
$$

Thus, the recurrence is satisfied if

$$
C(n)=\frac{-n \log _{2} n}{\epsilon \log _{2} \epsilon+(1-\epsilon) \log _{2}(1-\epsilon)}
$$

Note that the constant a will be very large for values of ϵ that are close to either 0 or 1 . Thus, even very bad partitions will not destroy the $O(n \log n)$ complexity, provided that the respective partition sizes are bounded by ϵn and $(1-\epsilon) n$. However, bad partitions will still lead to slow algorithms due to the large constant factor involved.

K-Exercise 2 (An Iterative MergeSort)

The following iterative implementation of the MergeSort algorithm is proposed:

```
ItMergeSort (A: Array [0..n-1]) {
    // n assumed to be a power of 2: n=2^k
    k := log2(n)
    //
    m := 2
    for L from 1 to k do {
        for i from 0 to ( }\textrm{n}/\textrm{m}\mathrm{ )-1 do {
            MergeIP(A[i*m .. i *m+(m/2-1],
                                    A[i*m+(m/2) .. i i m+(m-1],
                                    A[i*m .. i *m+(m-1));
        };
        m := 2*m;
    };
}
```

The procedure MergeIP is equivalent to the procedure Merge discussed in the lecture, but can work directly on the array A (i.e., merges two adjacent subarrays of A).
a) Describe shortly and in plain words, how ItMergeSort compares to the recursive MergeSort implementation discussed in the lecture. For that purpose, draw a diagram that illustrates the sorting of an array $\mathrm{A}[0 . .7]$ for ItMergeSort.
b) Formulate a loop invariant for the L-loop of the algorithm, and prove its correctness.

Solution:

a) In each iteration of the L-loop two adjacent subarrays are merged. The lengths of the merged subarrays $(m / 2)$ is doubled from each L-loop iteration to the next. In that way, the same
merging steps as for the recursive implementation of MergeSort are executed. The divide steps are implicitly performed on the array.

$$
\begin{aligned}
& 1=1 \\
& \begin{array}{l|l|l:l|l|l|l|l|}
\hline \mathrm{A}[0] & \mathrm{A}[1] & \mathrm{A}[2] & \mathrm{A}[3] & \mathrm{A}[4] & \mathrm{A}[5] & \mathrm{A}[6] & \mathrm{A}[7] \\
\hline 1=2 \\
\begin{array}{lllllllll|}
& \mathrm{A}[0] & \mathrm{A}[1] & \mathrm{A}[2] & \mathrm{A}[3] & \mathrm{A}[4] & \mathrm{A}[5] & \mathrm{A}[6] & \mathrm{A}[7] \\
\hline
\end{array} \\
1=3 \\
\hline
\end{array} \begin{array}{llllllll}
\mathrm{A}[0] & \mathrm{A}[1] & \mathrm{A}[2] & \mathrm{A}[3] & \mathrm{A}[4] & \mathrm{A}[5] & \mathrm{A}[6] & \mathrm{A}[7] \\
\hline
\end{array}
\end{aligned}
$$

b) We propose the following loop invariant:

At entry of the L-loop, the array A consists of $\frac{2 n}{m}$ subarrays of length $\frac{m}{2}$, where $m=2^{L}$. Each of the subarrays is sorted.
Here's a sketch of the proof:
Initialisation: on the first entry, for $L=1$ and $m=2^{1}$, the length of the subarrays is claimed to be $\frac{m}{2}=1$ with $\frac{2 n}{2}=n$ subarrays - this is obviously satisfied, as subarrays of length 1 are always sorted.

Maintenance: The i-loop will take $\frac{n}{m}$ pairs of two adjacent subarrays and merge them using the procedure MergeIP. Provided the correctness of MergeIP, this will lead to $\frac{n}{m}$ subarrays of twice the length, which satisfies the loop invariant for the next iteration. Note that m is multiplied by 2 , to retain $m=2^{L}$.
Termination: At termination, $L=k+1$ and thus $m=2^{k+1}=2 n$. Hence, we have only $\frac{2 n}{2 n}=1$ subarray of length $\frac{2 n}{2}=n$, which is sorted. This implies the correctness of the sorting algorithm.

