
Technische Universität München WS 2015/16
Institut für Informatik Worksheet 3
Theoretische Informatik 2.11.2015

Fundamental Algorithms 3

– Solution Examples –

Exercise 1

Consider a partitioning algorithm that, in the worst case, will partition an array of m elements
into two partitions of size bεmc and d(1− ε)me, where ε is fixed, and 0 < ε < 1. Show that a
quicksort algorithm based on this partitioning has a worst-case complexity of O(n log n).

Solution:

Again, we will only count comparisons between array elements.

Using that the partitioning step will require at most n comparisons, we get the following recur-
rence for the necessary number C(n) of comparisons:

C(1) = 0
C(n) = C(εn) + C((1− ε)n) + n

We guess C(n) := an log2 n + b as the solution, and try to find constants a and b such that the
recurrence is satisfied:
case n = 1:

C(1) = a · 1 · log2 1 + b = 0 ⇔ b = 0,

hence, C(n) = an log2 n.

case n > 1: We insert our guess into the recurrence:

an log2 n = C(n) = C(εn) + C((1− ε)n) + n
⇔ an log2 n = aεn log2(εn) + a(1− ε)n log2((1− ε)n) + n
⇔ an log2 n = aεn (log2 ε + log2 n) + a(1− ε)n (log2(1− ε) + log2 n) + n
⇔ an log2 n = aεn log2 ε + aεn log2 n +

a(1− ε)n log2(1− ε) + a(1− ε)n log2 n + n
⇔ an log2 n = aεn log2 ε + aεn log2 n +

1

an log2(1− ε)− aεn log2(1− ε) + an log2 n− aεn log2 n + n
⇔ 0 = aεn log2 ε + an log2(1− ε)− aεn log2(1− ε) + n
⇔ 0 = an (ε log2 ε + (1− ε) log2(1− ε)) + n

⇔ a =
−1

ε log2 ε + (1− ε) log2(1− ε)

Thus, the recurrence is satisfied if

C(n) =
−n log2 n

ε log2 ε + (1− ε) log2(1− ε)

Note that the constant a will be very large for values of ε that are close to either 0 or 1. Thus,
even very bad partitions will not destroy the O(n log n) complexity, provided that the respective
partition sizes are bounded by εn and (1− ε)n. However, bad partitions will still lead to slow
algorithms due to the large constant factor involved.

K-Exercise 2 (An Iterative MergeSort)

The following iterative implementation of the MergeSort algorithm is proposed:

I tMergeSort (A: Array [0 . . n−1]) {
/ / n assumed t o be a power o f 2 : n=2ˆ k
k := log2 (n)
/ /

m := 2
for L from 1 to k do {

for i from 0 to (n/m)−1 do {
MergeIP (A[i ∗m . . i ∗m+(m/2−1] ,

A[i ∗m+(m/2) . . i ∗m+(m−1] ,
A[i ∗m . . i ∗m+(m−1)) ;

} ;
m := 2∗m;

} ;
}

The procedure MergeIP is equivalent to the procedure Merge discussed in the lecture, but can
work directly on the array A (i.e., merges two adjacent subarrays of A).

a) Describe shortly and in plain words, how ItMergeSort compares to the recursive MergeSort
implementation discussed in the lecture. For that purpose, draw a diagram that illustrates
the sorting of an array A[0..7] for ItMergeSort.

b) Formulate a loop invariant for the L-loop of the algorithm, and prove its correctness.

Solution:

a) In each iteration of the L-loop two adjacent subarrays are merged. The lengths of the merged
subarrays (m/2) is doubled from each L-loop iteration to the next. In that way, the same

2

merging steps as for the recursive implementation of MergeSort are executed. The divide
steps are implicitly performed on the array.

A[1] A[2] A[3] A[4] A[5] A[6] A[7]A[0]

A[1] A[2] A[3] A[4] A[5] A[6] A[7]A[0]

A[1] A[2] A[3] A[4] A[5] A[6] A[7]A[0]

l = 1

l = 2

l = 3

b) We propose the following loop invariant:

At entry of the L-loop, the array A consists of 2n
m subarrays of length m

2 , where
m = 2L. Each of the subarrays is sorted.

Here’s a sketch of the proof:

Initialisation: on the first entry, for L = 1 and m = 21, the length of the subarrays is claimed
to be m

2 = 1 with 2n
2 = n subarrays – this is obviously satisfied, as subarrays of length 1

are always sorted.

Maintenance: The i-loop will take n
m pairs of two adjacent subarrays and merge them using

the procedure MergeIP. Provided the correctness of MergeIP, this will lead to n
m subar-

rays of twice the length, which satisfies the loop invariant for the next iteration. Note
that m is multiplied by 2, to retain m = 2L.

Termination: At termination, L = k + 1 and thus m = 2k+1 = 2n. Hence, we have only
2n
2n = 1 subarray of length 2n

2 = n, which is sorted. This implies the correctness of the
sorting algorithm.

3

