Fundamental Algorithms 3

- Solution Examples -

Exercise 1

Consider a partitioning algorithm that, in the worst case, will partition an array of *m* elements into two partitions of size $\lfloor \epsilon m \rfloor$ and $\lceil (1 - \epsilon)m \rceil$, where ϵ is fixed, and $0 < \epsilon < 1$. Show that a quicksort algorithm based on this partitioning has a worst-case complexity of $O(n \log n)$.

Solution:

Again, we will only count comparisons between array elements.

Using that the partitioning step will require at most *n* comparisons, we get the following recurrence for the necessary number C(n) of comparisons:

$$C(1) = 0$$

$$C(n) = C(\epsilon n) + C((1 - \epsilon)n) + n$$

We guess $C(n) := an \log_2 n + b$ as the solution, and try to find constants *a* and *b* such that the recurrence is satisfied:

case n = 1:

$$C(1) = a \cdot 1 \cdot \log_2 1 + b = 0 \quad \Leftrightarrow b = 0,$$

hence, $C(n) = an \log_2 n$.

case n > 1: We insert our guess into the recurrence:

$$\begin{array}{rcl} an \log_2 n = C(n) &=& C(\epsilon n) + C((1-\epsilon)n) + n \\ \Leftrightarrow & an \log_2 n &=& a\epsilon n \log_2(\epsilon n) + a(1-\epsilon)n \log_2((1-\epsilon)n) + n \\ \Leftrightarrow & an \log_2 n &=& a\epsilon n \left(\log_2 \epsilon + \log_2 n\right) + a(1-\epsilon)n \left(\log_2(1-\epsilon) + \log_2 n\right) + n \\ \Leftrightarrow & an \log_2 n &=& a\epsilon n \log_2 \epsilon + a\epsilon n \log_2 n + \\ & & a(1-\epsilon)n \log_2(1-\epsilon) + a(1-\epsilon)n \log_2 n + n \\ \Leftrightarrow & an \log_2 n &=& a\epsilon n \log_2 \epsilon + a\epsilon n \log_2 n + \end{array}$$

$$an \log_2(1-\epsilon) - a\epsilon n \log_2(1-\epsilon) + an \log_2 n - a\epsilon n \log_2 n + n$$

$$\Leftrightarrow \quad 0 = a\epsilon n \log_2 \epsilon + an \log_2(1-\epsilon) - a\epsilon n \log_2(1-\epsilon) + n$$

$$\Leftrightarrow \quad 0 = an (\epsilon \log_2 \epsilon + (1-\epsilon) \log_2(1-\epsilon)) + n$$

$$\Leftrightarrow \quad a = \frac{-1}{\epsilon \log_2 \epsilon + (1-\epsilon) \log_2(1-\epsilon)}$$

Thus, the recurrence is satisfied if

$$C(n) = \frac{-n\log_2 n}{\epsilon \log_2 \epsilon + (1-\epsilon)\log_2(1-\epsilon)}$$

Note that the constant *a* will be very large for values of ϵ that are close to either 0 or 1. Thus, even very bad partitions will not destroy the $O(n \log n)$ complexity, provided that the respective partition sizes are bounded by ϵn and $(1 - \epsilon)n$. However, bad partitions will still lead to slow algorithms due to the large constant factor involved.

K-Exercise 2 (An Iterative MergeSort)

The following iterative implementation of the MergeSort algorithm is proposed:

The procedure MergeIP is equivalent to the procedure **Merge** discussed in the lecture, but can work directly on the array A (i.e., merges two adjacent subarrays of A).

- a) Describe shortly and in plain words, how ItMergeSort compares to the recursive MergeSort implementation discussed in the lecture. For that purpose, draw a diagram that illustrates the sorting of an array A[0..7] for ItMergeSort.
- **b**) Formulate a loop invariant for the L-loop of the algorithm, and prove its correctness.

Solution:

a) In each iteration of the L-loop two adjacent subarrays are merged. The lengths of the merged subarrays (m/2) is doubled from each L-loop iteration to the next. In that way, the *same*

merging steps as for the recursive implementation of MergeSort are executed. The divide steps are implicitly performed on the array.

1 = 1	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]
l = 2	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]
1 = 3	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]

b) We propose the following loop invariant:

At entry of the L-loop, the array A consists of $\frac{2n}{m}$ subarrays of length $\frac{m}{2}$, where $m = 2^{L}$. Each of the subarrays is sorted.

Here's a sketch of the proof:

- **Initialisation:** on the first entry, for L = 1 and $m = 2^1$, the length of the subarrays is claimed to be $\frac{m}{2} = 1$ with $\frac{2n}{2} = n$ subarrays this is obviously satisfied, as subarrays of length 1 are always sorted.
- **Maintenance:** The i-loop will take $\frac{n}{m}$ pairs of two adjacent subarrays and merge them using the procedure MergeIP. Provided the correctness of MergeIP, this will lead to $\frac{n}{m}$ subarrays of twice the length, which satisfies the loop invariant for the next iteration. Note that *m* is multiplied by 2, to retain $m = 2^{L}$.
- **Termination:** At termination, L = k + 1 and thus $m = 2^{k+1} = 2n$. Hence, we have only $\frac{2n}{2n} = 1$ subarray of length $\frac{2n}{2} = n$, which is sorted. This implies the correctness of the sorting algorithm.