Fundamental Algorithms 4

Exercise 1

Try the Recursion Tree Method (compare lecture) for the following recurrence:

$$
T(n)=T(n / 3)+T(2 n / 3)+O(n)
$$

Show that the height of the recursion tree is in $O(\log (n))$.
What could be a flaw using the recursion tree method for such unbalanced trees? Show that $T(n) \in O(n \log (n))$, anyway, by using the substitution method.

Exercise 2

For the so-called BFPRT Algorithm, an algorithm to determine the median element of an array, we obtain the following (slightly simplified) recurrence equation for its running time $T(n)$ (depending on the number n of elements):

$$
T(n)=s(n, k)+T\left(\frac{n}{k}\right)+T\left(\frac{l}{2 k} n\right) .
$$

k and l are parameters (k usually small, for example $k=3$ or $k=5$) where $k=2 l+1$. For the function s, we can assume $s(n, k) \in \Theta(n \log k)$.
a) Show that $T(n) \in O(n)$.
b) Does it make sense to use large values for k (and l, resp.)?

