
Technische Universität München WS 2015/16
Institut für Informatik Worksheet 4
Theoretische Informatik 9.11.2015

Fundamental Algorithms 4

Exercise 1

Try the Recursion Tree Method (compare lecture) for the following recurrence:

T(n) = T(n/3) + T(2n/3) + O(n)

Show that the height of the recursion tree is in O(log(n)).

• We assume that all occurring n are multiples of 3. Further, let c be the constant in the O(n)
term. We then obtain the recursion tree

cn

c(2n/3)

c(n/9)

c(n/3)

c(2n/9) c(2n/9) c(4n/9)

= cn

= cn

= cn

On each level, we obviously obtain cn operations, independent of the level.

• The longest path in the recursion tree is the rightmost path with problem size n → 2/3n →
(2/3)2n → · · · → 1 until we stop at problem size 1. The height h of the tree can be deter-
mined via the equation (2/3)hn = 1, leading to h = log3/2 n.

We could expect the total cost to be O(cn log3/2 n) = O(n log n).

What could be a flaw using the recursion tree method for such unbalanced trees?
Show that T(n) ∈ O(n log(n)), anyway, by using the substitution method.

• Problem: If the tree was a complete binary tree, we would have 2log3/2 n = nlog3/2 2 leaves
(as log3/2 n = log2 n/ log2

3
2 = log2 n/ log 3

2
2, using the formula loga b = 1/ logb a). As

log3/2 2 > 1, the number of terms would be ω(n log n) on the last level. Hence, the simple
approach of assuming constant effort c for T(1) on the final level does no longer work: in
that case, the costs would sum up to Θ(cnlog3/2 2) on the last level – and not cn!

1



Hence, we’d have to explicitly consider that the tree starts to thin out much earlier (starting
at level 1 + log3 n), and we would have to examine the exact cost on all subsequent levels,
which is more tedious than our tree diagram suggests.

• We simplify and assume that the total cost are O(n log n) and use the substitution method
to verify this:

Assuming that T(n) ≤ an log n for a suitable constant a, we obtain

T(n) ≤ T(n/3) + T(2n/3) + cn
≤ a(n/3) log(n/3) + a(2n/3) log(2n/3) + cn
= a3n/3 log n− a ((n/3) log 3 + (2n/3) log(3/2)) + cn
= an log n− a ((n/3) log 3 + (2n/3) log 3− (2n/3) log 2) + cn
= an log n− an (log 3− 2/3 log 2) + cn
≤ an log n

for d ≥ c/(log 3− 2/3 log 2).

Exercise 2

For the so-called BFPRT Algorithm, an algorithm to determine the median element of an array, we
obtain the following (slightly simplified) recurrence equation for its running time T(n) (depending
on the number n of elements):

T(n) = s (n, k) + T
(n

k

)
+ T

(
l

2k
n
)

.

k and l are parameters (k usually small, for example k = 3 or k = 5) where k = 2l + 1. For the
function s, we can assume s(n, k) ∈ Θ(n log k).

a) Show that T(n) ∈ O(n).

b) Does it make sense to use large values for k (and l, resp.)?

Solution:

We try to prove the claim by inserting the assumed solution T(n) ≤ cn into the recurrence equa-
tion:

cn ≥ s(n, k) + c · n
k
+ c · l

2k
n

⇔ c(n− n
k
− l

2k
n) ≥ s(n, k)

As s(n, k) ∈ Θ(n log k), there is a constant Cs such that s(n, k) ≤ Csn log k for large enough n.
Therefore, c has to be large enough to satisfy

c(n− n
k
− l

2k
n) ≥ Csn log k ≥ s(n, k)

⇔ c ≥ Cs log k
1− 1

k −
l

2k

∈ O(log k)

Hence, we can choose a suitable, large enough c that is independent of n, and thus prove T(n) ∈
O(n), but the involved constant has to slightly grow with k, as c ∈ O(log k). As a consequence, k
should be of limited size.

2


