Fundamental Algorithms 4

Exercise 1

Try the Recursion Tree Method (compare lecture) for the following recurrence:

$$
T(n)=T(n / 3)+T(2 n / 3)+O(n)
$$

Show that the height of the recursion tree is in $O(\log (n))$.

- We assume that all occurring n are multiples of 3 . Further, let c be the constant in the $O(n)$ term. We then obtain the recursion tree

On each level, we obviously obtain cn operations, independent of the level.

- The longest path in the recursion tree is the rightmost path with problem size $n \rightarrow 2 / 3 n \rightarrow$ $(2 / 3)^{2} n \rightarrow \cdots \rightarrow 1$ until we stop at problem size 1 . The height h of the tree can be determined via the equation $(2 / 3)^{h} n=1$, leading to $h=\log _{3 / 2} n$.
We could expect the total cost to be $O\left(c n \log _{3 / 2} n\right)=O(n \log n)$.
What could be a flaw using the recursion tree method for such unbalanced trees?
Show that $T(n) \in O(n \log (n))$, anyway, by using the substitution method.
- Problem: If the tree was a complete binary tree, we would have $2^{\log _{3 / 2} n}=n^{\log _{3 / 2} 2}$ leaves (as $\log _{3 / 2} n=\log _{2} n / \log _{2} \frac{3}{2}=\log _{2} n / \log _{\frac{3}{2}} 2$, using the formula $\log _{a} b=1 / \log _{b} a$). As $\log _{3 / 2} 2>1$, the number of terms would be $\omega(n \log n)$ on the last level. Hence, the simple approach of assuming constant effort c for $\mathrm{T}(1)$ on the final level does no longer work: in that case, the costs would sum up to $\Theta\left(c n^{\log _{3 / 2} 2}\right)$ on the last level - and not $c n$!

Hence, we'd have to explicitly consider that the tree starts to thin out much earlier (starting at level $1+\log _{3} n$), and we would have to examine the exact cost on all subsequent levels, which is more tedious than our tree diagram suggests.

- We simplify and assume that the total cost are $O(n \log n)$ and use the substitution method to verify this:
Assuming that $T(n) \leq a n \log n$ for a suitable constant a, we obtain

$$
\begin{aligned}
T(n) & \leq T(n / 3)+T(2 n / 3)+c n \\
& \leq a(n / 3) \log (n / 3)+a(2 n / 3) \log (2 n / 3)+c n \\
& =a 3 n / 3 \log n-a((n / 3) \log 3+(2 n / 3) \log (3 / 2))+c n \\
& =a n \log n-a((n / 3) \log 3+(2 n / 3) \log 3-(2 n / 3) \log 2)+c n \\
& =a n \log n-a n(\log 3-2 / 3 \log 2)+c n \\
& \leq a n \log n
\end{aligned}
$$

for $d \geq c /(\log 3-2 / 3 \log 2)$.

Exercise 2

For the so-called BFPRT Algorithm, an algorithm to determine the median element of an array, we obtain the following (slightly simplified) recurrence equation for its running time T (n) (depending on the number n of elements):

$$
T(n)=s(n, k)+T\left(\frac{n}{k}\right)+T\left(\frac{l}{2 k} n\right) .
$$

k and l are parameters (k usually small, for example $k=3$ or $k=5$) where $k=2 l+1$. For the function s, we can assume $s(n, k) \in \Theta(n \log k)$.
a) Show that $T(n) \in O(n)$.
b) Does it make sense to use large values for k (and l, resp.)?

Solution:

We try to prove the claim by inserting the assumed solution $T(n) \leq c n$ into the recurrence equation:

$$
\begin{aligned}
c n & \geq s(n, k)+c \cdot \frac{n}{k}+c \cdot \frac{l}{2 k} n \\
\Leftrightarrow c\left(n-\frac{n}{k}-\frac{l}{2 k} n\right) & \geq s(n, k)
\end{aligned}
$$

As $s(n, k) \in \Theta(n \log k)$, there is a constant C_{s} such that $s(n, k) \leq C_{s} n \log k$ for large enough n. Therefore, c has to be large enough to satisfy

$$
\begin{aligned}
c\left(n-\frac{n}{k}-\frac{l}{2 k} n\right) & \geq C_{s} n \log k \geq s(n, k) \\
\Leftrightarrow c & \geq \frac{C_{s} \log k}{1-\frac{1}{k}-\frac{l}{2 k}} \in O(\log k)
\end{aligned}
$$

Hence, we can choose a suitable, large enough c that is independent of n, and thus prove $T(n) \in$ $O(n)$, but the involved constant has to slightly grow with k, as $c \in O(\log k)$. As a consequence, k should be of limited size.

