Fundamental Algorithms 7

Exercise 1

Let $n=1000$. Compute the values of the hash function $h(k)=\lfloor n(a k-\lfloor a k\rfloor)\rfloor$ for the keys $k \in\{61,62,63,64,65\}$, using $a=\frac{\sqrt{5}-1}{2}$. What do you observe?

Exercise 2

Given is a hash table $\mathrm{T}[0, \ldots 8]$ of 10 elements. Draw an image of this hash table after the keys $5,28,19,15,20,33,12,17$, and 10 have been inserted (in that particular order). Use the hash function $h: U \rightarrow\{0,1, \ldots, 8\}, h(k)=k \bmod 9$, and use chaining to resolve collisions.

Exercise 2a

Repeat exercise 2 for hash tables that use open addressing. Use a hash table $\mathrm{T}[0, \ldots 10$] with 11 elements, instead, and use the following hash functions:
(1) $h(k, i):=(k+i) \bmod 11$
(2) $h(k, i):=\left(k \bmod 11+2 i+i^{2}\right) \bmod 11$
(3) $h(k, i):=(k \bmod 11+i(k \bmod 7+1)) \bmod 11$

Insert the keys $5,19,27,15,30,34,26,12$, and 21 (in that order). State which keys require the longest probe sequence in the resulting tables.

Exercise 3

Consider a universe U of keys, where $|U|>m n$, and a hash function $h: U \rightarrow\{0,1, \ldots, n-1\}$. Show that there is at least one subset of U that contains m keys that are all hashed to the same slot by h.

