Fundamental Algorithms 7

Exercise 1

Let $n=1000$. Compute the values of the hash function $h(k)=\lfloor n(a k-\lfloor a k\rfloor)\rfloor$ for the keys $k \in\{61,62,63,64,65\}$, using $a=\frac{\sqrt{5}-1}{2}$. What do you observe?

Solution:

$$
\begin{aligned}
& h(61)=700 \\
& h(62)=318 \\
& h(63)=936 \\
& h(64)=554 \\
& h(65)=172
\end{aligned}
$$

The hash function is "non-smooth": neighboring entries lead to completely different hash values.

Exercise 2

Given is a hash table $\mathrm{T}[0, \ldots 8]$ of 10 elements. Draw an image of this hash table after the keys $5,28,19,15,20,33,12,17$, and 10 have been inserted (in that particular order). Use the hash function $h: U \rightarrow\{0,1, \ldots, 8\}, h(k)=k \bmod 9$, and use chaining to resolve collisions.

Solution:

i	0	1	2	3	4	5	6	7	8
T[i]	[]	$[10,19,28]$	$[20]$	$[12]$	[]	$[5]$	$[33,15]$	[]	$[17]$

The []-notation denotes the lists that are stored in each hash table slot.

Exercise 2a

Repeat exercise 2 for hash tables that use open addressing. Use a hash table $\mathrm{T}[0, \ldots 10$] with 11 elements, instead, and use the following hash functions:
(1) $h(k, i):=(k+i) \bmod 11$
(2) $h(k, i):=\left(k \bmod 11+2 i+i^{2}\right) \bmod 11$
(3) $h(k, i):=(k \bmod 11+i(k \bmod 7)) \bmod 11$

Insert the keys $5,19,27,15,30,34,26,12$, and 21 (in that order). State which keys require the longest probe sequence in the resulting tables.

Solution:

(1) linear probing, using $h(k, i):=(k+i) \bmod 11$:

i	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{~T}[\mathrm{i}]$		34	12		15	5	27	26	19	30	21

Longest probe sequence is 4 : for 26
(2) quadratic probing, using $h(k, i):=\left(k \bmod 11+2 i+i^{2}\right) \bmod 11$:

i	0	1	2	3	4	5	6	7	8	9	10
T[i]	30	34	27		15	5		26	19	12	21

Longest probe sequence is 2 : for 27 and 12
(3) double hashing probing, using $h(k, i):=(k \bmod 11+i(k \bmod 7+1)) \bmod 11$

i	0	1	2	3	4	5	6	7	8	9	10
T[i]	30	27	12	21	15	5		34	19		26

Largest probe sequences are 5 (for 34), and 5 (for 21).
Note: Contrary to this example, double hashing usually beats linear or quadratic probing. Moreover, we'd recommend using a larger table for open addressing...

Exercise 3

Consider a universe U of keys, where $|U|>m n$, and a hash function $h: U \rightarrow\{0,1, \ldots, n-1\}$. Show that there is at least one subset of U that contains m keys that are all hashed to the same slot by h.

Solution: proof by contradiction

Assume the opposite, i.e. that for all n values of the hash function the number of elements in U that are hashed to this value is smaller than m. As a consequence, the number of elements that are hashed to any of the n keys is smaller than $n m$. This contradicts the fact that U is considered to have more than $n m$ elements. Hence, our assumption has to be false, and there has to be at least one subset containing at least m elements.

