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Exercise 1

Write a parallel program that computes the scalar product of two vectors (stored in two arrays).
Discuss the runtime complexity on the EREW PRAM model. How many processors can be
used?

Solution

Sequential algorithm

ScalarProduct (A: Array [ 1 . . n ] , B : Array [ 1 . . n ] ) : Integer {
re s := 0 ;
for i from 1 to n do

re s = r es + A[ i ]∗B [ i ] ;
return r es ;

}

Parallel version: first compute vector product in parallel, then use fan-in to compute sum:

ScalarProductPRAM (A: Array [ 1 . . n ] , B : Array [ 1 . . n ] ) : Integer {
// n assumed to be 2ˆ k
// Model : EREW PRAM
Create Array C [ 1 . . n ] ;

for i from 1 to n do in p a r a l l e l
C[ i ] = A[ i ]∗B [ i ] ;

for L from 0 to k−1 do
for j from 1 by 2 ˆ ( L+1) to n do in p a r a l l e l

C[ j ] = C[ j ]+C[ j +2ˆL ] ;

return C [ 1 ] ;
}

• First loop: n processors, second one n/2.

• Time complexity thus: Θ(log n), as k = log n, on n processors (due to first loop)
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• Time complexity of Θ(log n) on n/2 processors would also be possible, because the first
loop could also be executed on n/2 processors in Θ(1) runtime.

For the binary fan-in, the given implementation corresponds to the following scheme:
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Exercise 2

Extend the program of exercise 1 to compute a matrix-vector or matrix-matrix product. Again,
discuss the runtime complexity on the EREW PRAM and state the number of processors that
are used.

Solution for matrix-vector product

Sequential algorithm

MatrixVectorProduct (M: Array [ 1 . . n , 1 . . n ] , X : Array [ 1 . . n ] ) : Array [ 1 . . n ] {
for i from 1 to n do

C[ i ] = 0
for j from 1 to n do

C[ i ] = C[ i ] + M[ i , j ]∗X[ i ] ;
return C;

}

Parallel version

MatrixVectorProductPRAM (M: Array [ 1 . . n , 1 . . n ] , X : Array [ 1 . . n ] ) : Array [ 1 . . n ]{
// n assumed to be 2ˆ k

for i from 1 to n do in p a r a l l e l
C[ i ] = ScalarProductPRAM (M[ i , 1 . . n ] , X [ 1 . . n ] ) ;

return C;
}

in Θ(log n) due to complexity of ScalarProductPRAM for n2 processors (also possible with n2/2
processors), using n parallel function calls to ScalarProductPRAM. Problem: concurrent reads
to X in ScalarProductPRAM, works only on CREW PRAM, not on EREW PRAM.

Thus, replicate X for each of the n calls to ScalarProductPRAM, and then call ScalarProduct-
PRAM for each copy:
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MatrixVectorProductEREW (M: Array [ 1 . . n , 1 . . n ] , X : Array [ 1 . . n ] ) : Array [ 1 . . n ]{
// n assumed to be 2ˆ k
// Model : EREW PRAM

for i from 1 to n do in p a r a l l e l
XX[ 1 , i ] = X[ i ] ;

for l from 1 to k do
for j from 2 ˆ ( l −1)+1 to 2ˆ l do in p a r a l l e l

for i from 1 to n do in p a r a l l e l
XX[ j , i ] = XX[ j −2ˆ( l −1) , i ] ;

for i from 1 to n do in p a r a l l e l
C[ i ] = ScalarProductPRAM (M[ i , 1 . . n ] , XX[ i , 1 . . n ] ) ;

return C;
}

• The first loop is in Θ(1) using n processors in parallel,

• the second one in Θ(log n), using up to n2/2 processors, and

• the n parallel calls to ScalarProductPRAM as before in Θ(log n) each,

• leading to an overall time complexity of Θ(log n) using at most n2 processors at the same
time.

Solution for matrix-matrix product

Similar, but one level more to think about.

Exercise 3

Given is the following parallel algorithm for prefix multiplication (for an EREW-PRAM).

PrefixPRAM (A: Array [ 1 . . n ] ) {
// n assumed to be 2ˆ k
// Model : EREW PRAM ( n−1 processors )

for l from 0 to k−1 do
for j from 2ˆ l +1 to n do in p a r a l l e l {

tmp [ j ] := A[ j −2ˆ l ] ;
A[ j ] := tmp [ j ]∗A[ j ] ;

}
}

Assume that the j-loop of the above program is changed to

for j from 2ˆ l +1 to n do { . . . }

3



(i.e., changed to a sequential loop). State why the resulting algorithm is no longer correct, and
suggest how to change the j-loop to obtain a correct sequential implementation. Also, state why
the parallel loop works correctly.

Solution:

If the j-loop of the program is changed to

for j from 2ˆ l +1 to n do { . . . }

then A[j−2ˆl] is already changed to its new value, when A[j] is updated. We obtain a correct
implementation, if the j-loop is executed in reverse order, or if the j-loop is split into two loops:
the first loop to compute all tmp[j], and the second loop to update the A[j]. The parallel loop
works correctly, because all tmp[j] are assigned their value at the same time, i.e., before these
values are copied to the A[j].
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