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Part I

Overview
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Organization

• Extent: 2 SWS / 3 credits
• Master CSE→ compulsory

Master BiomedComp→ elective
Master Informatics→ “bridge” courses

• Lecture only
• But practice necessary (as usual)

– Offer of tutorial sheets
– Maybe review of one exercise at beginning of next lecture
– Solution examples on the website

• Slides, tutorial sheets and announcements on the website
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Contents

Topics:
• Fundamentals (Analysis, Complexity Measures)
• Sorting
• Parallel Algorithms
• Searching (hashing, search trees, . . . )
• Arithmetic problems (e.g. parallel matrix and vector operations)
• Graph problems

Techniques: (more important!)
• Analysis of “fundamental” algorithms
⇒ not all algorithms will be explained in detail (“do it yourself!”)

• Aim: get common basis for other lectures
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Color Code for Headers

Blue Headers:
• for all slides with regular topics

Green Headers:
• summarized details: will be explained in the lecture, but usually

not as an explicit slide; “green” slides will only appear in the
handout versions

Orange Headers:
• advanced topics or outlook

Black Headers:
• repeat fundamental concepts that are probably already known,

but are important throughout the lecture

H. Räcke: Fundamental Algorithms

Chapter 1: Introduction, Winter 2015/16 5



Technische Universität München

Part II

Algorithms
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What is an Algorithm? – Some Definitions

Definition (found on numerous websites)

An algorithm is a set of rules that specify the order and kind of
arithmetic operations that are used on a specified set of data.

Definition (Wikipedia)

An algorithm is an effective method expressed as a finite list of
well-defined instructions for calculating a function.

Definition (Donald Knuth)

An algorithm is a finite, definite, effective procedure, with some
output.

Definition (Britannica.com)

Systematic procedure that produces – in a finite number of steps –
the answer to a question or the solution of a problem.
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Example Algorithm: Chocolate Chip Cookies
Ingredients:

• 1 cup butter, softened
• 1 cup white sugar
• 1 cup packed brown sugar
• 2 eggs
• 2 teaspoons vanilla extract
• 3 cups all-purpose flour

• 1 teaspoon baking soda
• 2 teaspoons hot water
• 1/2 teaspoon salt
• 2 cups semisweet chocolate

chips
• 1 cup chopped walnuts

Directions:
1. Preheat oven to 350 degrees F (175 degrees C).
2. Cream together the butter, white sugar, and brown sugar until

smooth. Beat in the eggs one at a time, then stir in the vanilla.
Dissolve baking soda in hot water. Add to batter along with salt.
Stir in flour, chocolate chips, and nuts. Drop by large spoonfuls
onto ungreased pans.

3. Bake for about 10 minutes in the preheated oven, or until edges
are nicely browned.
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Essential properties of an algorithm

• an algorithm is finite
(w.r.t.: set of instructions, use of resources, time of computation)

• instructions are precise and computable
• instructions have a specified logical order, however, we can

discriminate between
• deterministic algorithms

(every step has a well-defined successor)
• non-deterministic algorithms

(randomized algorithms, e.g.)
• how about parallel algorithms?

(→ “logical order” can be parallel as well as
non-deterministic)

• produce a result
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Basic Questions About Algorithms

For each algorithm, we should answer the following basic questions:
• does it terminate?
• is it correct?
• is the result of the algorithm determined?
• how much resources will it use in terms of

• memory? (and memory bandwidth?)
• operations?
• run-time?
• . . . ?
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Example: Fibonnacci Numbers

Definition

The sequence fj , j ∈ N, of the Fibonacci numbers is defined
recursively as:

f0 := 1
f1 := 1
fj := fj−1 + fj−2 for j ≥ 2

Origin: simple model of a rabbit population
• starts with one pair of rabbits (male and female)
• every month, each pair of rabbits gives birth to a new pair
• but: new-born rabbits need one month to become mature

(compare lecture in Scientific Computing)
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A Recursive Algorithm for the Fibonacci Numbers

Fibo ( n : Integer ) : Integer {
i f n=0 then return 1;
i f n=1 then return 1;
i f n>1 then return Fibo ( n−1) + Fibo ( n−2);

}

→ How many arithmetic operations does it take to compute fj?

Definition

TFibo(n) shall be the number of arithmetic operations (here: additions)
that the algorithm Fibo will perform with n as input parameter.
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Number of Additions by Fibo

We observe that:
• TFibo(0) = TFibo(1) = 0

(both cases do not require any additions)

If the parameter n is larger than 1, then we have to:
• perform all additions of calling Fibo(n−1) and Fibo(n−2)
• and add the two results
• thus:

TFibo(n) = TFibo(n − 1) + TFibo(n − 2) + 1

No→ better:

TFibo(n) = TFibo(n − 1) + TFibo(n − 2) + 3

• because: we forgot to compute n − 1 and n − 2
We obtain a so-called recurrence equation
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Number of Additions by Fibo (2)

Solving the recurrence: (in this example)
• first observation: recurrence looks a lot like Fibonacci

recurrence, itself
• draw a table of n vs. additions
→ observation/assumption: TFibo(n) = 3fn − 3

• Proof: by induction over n

Estimate of the number of operations:
• algebraic formulation of the Fibonacci numbers:

fn =
1√
5

(1 +
√

5
2

)n+1

−

(
1−
√

5
2

)n+1


• exponential growth of number of operations
• example: TFibo(100) ≈ 1021

(requires more than 30,000 years, if we process one addition per
nanosecond)
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Why is Fibo so Slow?

Examine recursive calls:

Fibo(4)

Fibo(2) Fibo(3)

Fibo(0) Fibo(1) Fibo(1) Fibo(2)

Fibo(1)Fibo(0)

→ Obviously, lots of numbers fj are computed multiple times!
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An Iterative Algorithm for the Fibonacci Numbers

F i b I t ( n : Integer ) : Integer {
i f n < 2 then return 1;
else {

l a s t 2 := 1 ;
l a s t 1 := 1 :
f o r i from 2 to n do {

f := l a s t 2 + l a s t 1 ;
l a s t 2 := l a s t 1 ;
l a s t 1 := f ;

}
return l a s t 1 ; / / where l a s t 1 = f

}
}

Idea:
• keep the last two values fi−2 and fi−1 in last2 and last1
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Is This Correct?
Only the loop is critical for correctness

• Basic idea for a correctness proof:
use so-called loop invariant to prove properties about loop

• Statement of conditions that are valid for each loop execution
• Here, e.g.

before the loop body is executed:
last1 and last2 contain fi−1 and fi−2, respectively

For loop invariants, we need to prove:
Initialization: It is true prior to first execution of loop (body)
Maintenance: If it is true before iteration of loop, it remains true

before next iteration
Termination: When loop terminates, invariant gives us a useful

property that helps to prove correctness
(Note: compare scheme of proof by induction)

H. Räcke: Fundamental Algorithms

Chapter 1: Introduction, Winter 2015/16 17



Technische Universität München

Correctness

Invariant
{last1 = fi−1; last2 = fi−2}

Initialization
Before first execution of the loop body, we have

• i = 2
• last1 = 1 = f1
• last2 = 1 = f0
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Correctness (2)

Maintenance: Proof of invariant:
Consider function body {value of variables in brackets}

{last1 = fi−1; last2 = fi−2}
f := l a s t 2 + l a s t 1 ;

{last1 = fi−1; last2 = fi−2; f = fi}
l a s t 2 := l a s t 1 ;

{last1 = fi−1; last2 = fi−1; f = fi}
l a s t 1 := f ;

{last1 = fi ; last2 = fi−1; f = fi}

At end of (before beginning of next) loop body, we have implicitly

i := i + 1 ;
{last1 = fi−1; last2 = fi−2}

thus, invariant still holds at next loop entry
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Correctness (3)

Termination
• At loop termination, i exceeds n; thus i = n + 1

(Note: think in while-loops where increment is done explicitly)
• If loop invariant holds, then last1 and last2 contain fi−1 = fn and

fi−2 = fn−1, respectively
• we return last1, which holds the value fn

q.e.d.
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Does FibIt Require Fewer Operations?

We observe that:
• TFibIt(1) = TFibo(1) = 0

(no additions, if input parameter n < 2)
• If n ≥ 2:

• the for loop will be executed n − 1 times
• in the loop body, there is always exactly one addition per

loop iteration

Therefore:

TFibIt(n) =

{
0 for n ≤ 1

n − 1 for n ≥ 2

→ the operation count of FibIt increases linearly with n.

Question: will f109 be computed in 1 second?
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Part IV

Asymptotic Behaviour of
Functions
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Asymptotic Behaviour of Functions

Definition (Asymptotic upper bound)

g is called an asymptotic upper bound of f , or f ∈ O(g), if

∃c > 0 ∃n0 ∀n ≥ n0 : f (n) ≤ c · g(n) ⇐ 0 ≤ lim
n→∞

f (n)

g(n)
<∞

Definition (Asymptotic lower bound)

g is called an asymptotic lower bound of f , or f ∈ Ω(g), if

∃c > 0 ∃n0 ∀n ≥ n0 : f (n) ≥ c · g(n) ⇐ 0 < lim
n→∞

f (n)

g(n)
≤ ∞

Definition (Asymptotically tight bound)

g is called an asymptotically tight bound of f , or f ∈ Θ(g), if

f ∈ O(g) and f ∈ Ω(g)
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Asymptotic Behaviour of Functions (2)

Definition (Asymptotically smaller)

f is called asymptotically smaller than g, or f ∈ o(g), if

∀c > 0 ∃n0 ∀n ≥ n0 : f (n) ≤ c · g(n) ⇔ lim
n→∞

f (n)

g(n)
= 0

Definition (Asymptotically larger)

f is called asymptotically larger than g, or f ∈ ω(g), if

∀c > 0∃n0 ∀n ≥ n0 : f (n) ≥ c · g(n) ⇔ lim
n→∞

f (n)

g(n)
=∞

Remark on Notation:
∀c > 0∃n0 ∀n ≥ n0 : f (n) ≤ c · g(n) reads as:
“For all c > 0 there exists an n0 such that for all n ≥ n0 we have f (n) ≤ c · g(n)”
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Properties of the Asymptotics Relations

O, Ω, Θ, o, and ω define relations:
• all of the relations are transitive, e.g.:

f ∈ O(g) and g ∈ O(h) ⇒ f ∈ O(h)

• O, Ω, and Θ are reflexive:

f ∈ O(f ) f ∈ Ω(f ) f ∈ Θ(f )

• only Θ is symmetric:

f ∈ Θ(g) ⇔ g ∈ Θ(f )

• and there is a transpose symmetry:

f ∈ O(g) ⇔ g ∈ Ω(f )

f ∈ o(g) ⇔ g ∈ ω(f )
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Example: Asymptotics of the Fibonacci Numbers

“Famous” inequality
2b

n
2 c ≤ fn ≤ 2n

fn ∈ O(2n) (with c = 1, proof by induction):
• (Base case) for n = 0: f0 = 1 ≤ 20 = 1
• (Base case) for n = 1: f1 = 1 ≤ 21 = 2
• (Inductive case) from n − 1 and n − 2 to n (n ≥ 2):

fn = fn−1 + fn−2 ≤ 2n−1 + 2n−2 = 3 · 2n−2 ≤ 2n

fn ∈ Ω(2n/2) (proof by induction over k = n/2 – only for even n):
• (Base case) for k = 0⇒ n = 0: f0 = 1 ≥ 20 = 1
• (Ind. case) induction step: from n = 2k − 2 to n = 2k (n ≥ 2):

f2k = f2k−1 + f2k−2 ≥ 2f2k−2 = 2f2(k−1) ≥ 2 · 2k−1 = 2k
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