Fundamental Algorithms

Chapter 8: Graphs

Harald Räcke

Winter 2015/16

Graphs

Definition (Graph)

A graph G = (V, E) consists of a set V of vertices (nodes) and a set E of edges between the vertices.

- undirected graph: $(i, j) \in E$ an unordered pair (i, j) = (j, i)
- directed graph (or shorter: "digraph"):
 (*i*, *j*) ∈ *E* an ordered tuple, i.e. (*i*, *j*) ∈ *E* independent of (*j*, *i*) ∈ *E*

Graphs

Definition (Graph)

A graph G = (V, E) consists of a set V of vertices (nodes) and a set E of edges between the vertices.

- undirected graph: $(i, j) \in E$ an unordered pair (i, j) = (j, i)
- directed graph (or shorter: "digraph"):
 (*i*, *j*) ∈ *E* an ordered tuple, i.e. (*i*, *j*) ∈ *E* independent of (*j*, *i*) ∈ *E*

Some Terms

- two vertices V₀ and V_n are connected by a path (of length n), if there is a sequence of edges (V₀, V₁), (V₁, V₂),..., (V_{n-1}, V_n)
- a graph is **connected**, if there is a path between any two vertices
- a vertex V has degree d, if V has d (outgoing) edges

Graphs in CSE – Unstructured Grids:

- in blue: V = grid cells, E = neighbours ("dual graph")
- in black: V = grid vertices, E = cell edges

Definition (Tree)

A tree is a connected graph without cycles.

Definition (Tree)

A tree is a connected graph without cycles.

ightarrow Question: is this consistent with our "naive" image of a tree?

Definition (Tree)

A tree is a connected graph without cycles.

 \rightarrow Question: is this consistent with our "naive" image of a tree?

Theorem

A graph T is a **tree**, if and only if there is a unique path between any two distinct vertices of T.

Definition (Tree)

A tree is a connected graph without cycles.

 \rightarrow Question: is this consistent with our "naive" image of a tree?

Theorem

A graph T is a **tree**, if and only if there is a unique path between any two distinct vertices of T.

Implications:

- there is only one connection from the root to any of the nodes
- any path between two nodes will run through the root of the resp. subtree
- actually: which node is the "root" ?

Trees (2)

Theorem

A connected graph (V, E) is a tree, if and only if |E| = |V| - 1

Trees (2)

Theorem

A connected graph (V, E) is a tree, if and only if |E| = |V| - 1

Implications:

- if you "cut" one edge, a tree is no longer connected (child becomes an orphan)
- building a tree incrementally requires a root (one node, no edge) and one additional edge per added node

Trees (2)

Theorem

A connected graph (V, E) is a tree, if and only if |E| = |V| - 1

Implications:

- if you "cut" one edge, a tree is no longer connected (child becomes an orphan)
- building a tree incrementally requires a root (one node, no edge) and one additional edge per added node

Definition (Spanning Tree)

T = (V, E) is called a spanning tree for the graph G = (V, E'), if *T* is a tree, and $E \subset E'$.

Note: T has the same vertices as G.

Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

```
Node := (
    key: Integer,
    edges: List of Node );
}
```

Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

```
Node := (
    key: Integer,
    edges: List of Node );
}
```

Adjacency Matrix:

- $n \times n$ matrix A, where n = |V|
- *a_{ij}* = 1, if (*i*, *j*) ∈ *E*
- A symmetric for undirected graphs

Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

```
Node := (
    key: Integer,
    edges: List of Node );
}
```

Adjacency Matrix:

- $n \times n$ matrix A, where n = |V|
- *a_{ij}* = 1, if (*i*, *j*) ∈ *E*
- A symmetric for undirected graphs

Note: to store an adjacency matrix as an $n \times n$ array is a good idea, only if $|E| \in \Theta(n^2)$

Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph (V, E), and a node $x \in V$. **Task:** Starting from x, "visit" all vertices in V (following edges only)

Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph (V, E), and a node $x \in V$. **Task:** Starting from x, "visit" all vertices in V (following edges only)

Examples:

- modify the key values of all vertices
- search a specific key value in a graph

Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph (V, E), and a node $x \in V$. **Task:** Starting from x, "visit" all vertices in V (following edges only)

Examples:

- modify the key values of all vertices
- search a specific key value in a graph

Two main variants:

- depth-first traversal (depth-first search)
- breadth-first traversal (breadth-first search)

Depth-First Traversal

```
DFTraversal(V:Node) {
    ! mark current node V as visited:
    Mark[V.key] = 1;
    ! perform desired work on V:
    Visit(V);
    ! perform traversal from all nodes connected to V
    forall (V,W) in V.edges do
        if Mark[W.key] = 0 then DFTraversal(W);
    end do;
}
```

Assumptions:

- keys V.key numbered from 1, ..., n = |V|
- Mark : Array[1..n]
- forall loop executed sequentially

DF-Traversal – Stack-Based Implementation

```
StackDFTrav(X:Node) {
   ! uses stack of "active" nodes
   Stack active = { X }; Mark[X.key] = 1;
   while active \Leftrightarrow {} do
      ! remove first node from stack
      V = pop(active);
      Visit(V);
      forall (V,W) in V.edges do
          if Mark[W] = 0 then \{
           push(active, W); Mark[W.key] = 1;
      end do:
   end while:
}
```

 \rightarrow use stack as last-in-first-out (LIFO) data container

Breadth-First-Traversal

Queue-Based Implementation

```
BFTraversal(X:Node) {
     uses queue of "active" nodes
   Queue active = { X }; Mark[X.key] = 1;
   while active \langle \rangle do
      ! remove first node from queue
      V = remove(active);
      Visit(V);
      forall (V,W) in V.edges do
         if Mark[W.key] = 0 then \{
            append(active, W); Mark[W.key] = 1;
      end do:
   end while:
}
```

 $\rightarrow\,$ use queue as first-in-first-out (FIFO) data container

H. Räcke: Fundamental Algorithms Chapter 8: Graphs, Winter 2015/16

DF-Traversal – Stack-Based Implementation

```
StackDFTrav(X:Node) {
   ! uses stack of "active" nodes
   Stack active = \{X\};
   while active \langle \rangle do
      ! remove first node from stack
      V = pop(active);
      if Mark[V.key] = 0 then {
         Visit(V); Mark[V.key] = 1;
         forall (V,W) in V.edges do
            push(active, W);
         end do:
   end while:
}
```

 \rightarrow use stack as last-in-first-out (LIFO) data container

H. Räcke: Fundamental Algorithms Chapter 8: Graphs, Winter 2015/16

Breadth-First-Traversal

Queue-Based Implementation

```
BFTraversal(X:Node) {
     uses queue of "active" nodes
   Queue active = \{X\};
   while active \langle \rangle do
      ! remove first node from queue
      V = remove(active);
      if Mark[V.key] = 0 then {
           Visit(V); Mark[V.key] = 1;
           forall (V,W) in V.edges do
              append(active, W);
          end do:
   end while:
}
```

 $\rightarrow\,$ use queue as first-in-first-out (FIFO) data container

H. Räcke: Fundamental Algorithms Chapter 8: Graphs, Winter 2015/16

Breadth-First Search

```
BFSearch(x:Node, k:Integer) : Node {
   Queue active = \{x\}:
   while active \langle \rangle {} do
      V = remove(active);
      if V.key = k then return V;
      if Mark[V.key] = 0 then
         Mark[V, kev] = 1
          forall (V,W) in V.edges do
             append(active, W);
         end do:
      end if:
   end while:
}
```

Breadth-First Search

```
BFSearch(x:Node, k:Integer) : Node {
   Queue active = \{x\};
   while active \langle \rangle do
      V = remove(active);
      if V.key = k then return V;
      if Mark[V.key] = 0 then
         Mark[V, kev] = 1
          forall (V,W) in V.edges do
             append(active, W);
         end do:
      end if;
   end while:
}
```

Breadth-First Search as Shortest-Path Algorithm:

 breadth-first search will return the node with the shortest path from x

H. Räcke: Fundamental Algorithm Chapter 8: Graphs, White 2015/16

Breadth-First and Depth-First Traversal

DF/BF-Traversal and Connectivity of Graphs:

- DF- and BF-traversal will visit all nodes of a connected graph
- if a non-connected graph is traversed, both algorithms can be used to find the (maximum) connected sub-graph that contains the start node
- hence, DF- and BF-traversal can be extended to find all connectivity components of a graph

Breadth-First and Depth-First Traversal

DF/BF-Traversal and Connectivity of Graphs:

- DF- and BF-traversal will visit all nodes of a connected graph
- if a non-connected graph is traversed, both algorithms can be used to find the (maximum) connected sub-graph that contains the start node
- hence, DF- and BF-traversal can be extended to find all connectivity components of a graph

DF/BF-Traversal and Trees:

- DF- and BF-traversal will compute a spanning tree of a connected graph
- BF-traversal generates a spanning tree with shortest paths