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Graphs

Definition (Graph)

A graph G = (V ,E) consists of a set V of vertices (nodes)
and a set E of edges between the vertices.

• undirected graph: (i , j) ∈ E an unordered pair – (i , j) = (j , i)
• directed graph (or shorter: “digraph”):

(i , j) ∈ E an ordered tuple, i.e. (i , j) ∈ E independent of (j , i) ∈ E

Some Terms
• two vertices V0 and Vn are connected by a path (of length n), if

there is a sequence of edges (V0,V1), (V1,V2), . . . , (Vn−1,Vn)

• a graph is connected, if there is a path between any two vertices
• a vertex V has degree d , if V has d (outgoing) edges
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Graphs in CSE – Unstructured Grids:

• in blue: V = grid cells, E = neighbours (“dual graph”)
• in black: V = grid vertices, E = cell edges
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Trees

Definition (Tree)

A tree is a connected graph without cycles.

→ Question: is this consistent with our “naive” image of a tree?

Theorem

A graph T is a tree, if and only if there is a unique path between any
two distinct vertices of T .

Implications:
• there is only one connection from the root to any of the nodes
• any path between two nodes will run through the root of the resp.

subtree
• actually: which node is the “root” ?
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Trees (2)

Theorem

A connected graph (V ,E) is a tree, if and only if |E | = |V | − 1

Implications:
• if you “cut” one edge, a tree is no longer connected

(child becomes an orphan)
• building a tree incrementally requires a root (one node, no edge)

and one additional edge per added node

Definition (Spanning Tree)

T = (V ,E) is called a spanning tree for the graph G = (V ,E ′),
if T is a tree, and E ⊂ E ′.

Note: T has the same vertices as G.
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Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

Node := (
key : Integer ,
edges : L i s t o f Node ) ;

}

Adjacency Matrix:
• n × n matrix A, where n = |V |
• aij = 1, if (i , j) ∈ E
• A symmetric for undirected graphs

Note: to store an adjacency matrix as an n × n array is a good idea,
only if |E | ∈ Θ(n2)
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Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph (V ,E), and a
node x ∈ V .
Task: Starting from x , “visit” all vertices in V (following edges only)

Examples:
• modify the key values of all vertices
• search a specific key value in a graph

Two main variants:
• depth-first traversal (depth-first search)
• breadth-first traversal (breadth-first search)
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Depth-First Traversal

DFTraversal (V : Node ) {
! mark cu r ren t node V as v i s i t e d :
Mark [V . key ] = 1 ;
! perform des i red work on V:
V i s i t (V ) ;
! perform t r a v e r s a l from a l l nodes connected to V
f o r a l l (V ,W) in V. edges do

i f Mark [W. key ] = 0 then DFTraversal (W) ;
end do ;

}

Assumptions:
• keys V .key numbered from 1, . . . , n = |V |
• Mark : Array[1..n]
• forall loop executed sequentially
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DF-Traversal – Stack-Based Implementation

StackDFTrav (X : Node ) {
! uses stack o f ” a c t i v e ” nodes
Stack a c t i v e = { X } ; Mark [X . key ] = 1 ;
while a c t i v e <> {} do

! remove f i r s t node from stack
V = pop ( a c t i v e ) ;
V i s i t (V ) ;
f o r a l l (V ,W) in V. edges do

i f Mark [W] = 0 then {
push ( ac t i ve , W) ; Mark [W. key ] = 1 ;

}
end do ;

end while ;
}

→ use stack as last-in-first-out (LIFO) data container
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Breadth-First-Traversal
Queue-Based Implementation

BFTraversal (X : Node ) {
! uses queue of ” a c t i v e ” nodes
Queue a c t i v e = { X } ; Mark [X . key ] = 1 ;
while a c t i v e <> {} do

! remove f i r s t node from queue
V = remove ( a c t i v e ) ;
V i s i t (V ) ;
f o r a l l (V ,W) in V. edges do

i f Mark [W. key ] = 0 then {
append ( ac t i ve , W) ; Mark [W. key ] = 1 ;

}
end do ;

end while ;
}

→ use queue as first-in-first-out (FIFO) data container
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Breadth-First Search

BFSearch ( x : Node , k : Integer ) : Node {
Queue a c t i v e = { x } ;
while a c t i v e <> {} do

V = remove ( a c t i v e ) ;
i f V. key = k then return V;
i f Mark [V . key ] = 0 then

Mark [V . key ] = 1
f o r a l l (V ,W) in V. edges do

append ( ac t i ve , W) ;
end do ;

end i f ;
end while ;

}

Breadth-First Search as Shortest-Path Algorithm:
• breadth-first search will return the node with the shortest path

from x
• requires modification of algorithm to return this path, as well
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Breadth-First and Depth-First Traversal

DF/BF-Traversal and Connectivity of Graphs:
• DF- and BF-traversal will visit all nodes of a connected graph
• if a non-connected graph is traversed, both algorithms can be

used to find the (maximum) connected sub-graph that contains
the start node

• hence, DF- and BF-traversal can be extended to find all
connectivity components of a graph

DF/BF-Traversal and Trees:
• DF- and BF-traversal will compute a spanning tree of a

connected graph
• BF-traversal generates a spanning tree with shortest paths
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