
Technische Universität München

Fundamental Algorithms
Chapter 9: Weighted Graphs

Harald Räcke

Winter 2015/16

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 1

Technische Universität München

Weighted Graphs

Definition (Weighted Graph)

A weighted graph G = (V ,E) is attributed by a function w that
assigns a weight w(e) to each edge e ∈ E .

Comments
• typically: w(e) > 0 or w(e) ≥ 0 (but negative weights possible)
• we will consider weighted graphs with w : E → N
• notation: we will also write w(V ,W), instead of w((V ,W)),

for the weight w(e) of the edge e = (V ,W)

• examples: traffic networks, costs for routing, etc.

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 2

Technische Universität München

Shortest Path

Definition (Length of a Path)

The length of a path p = (V0,V1), (V1,V2), . . . , (Vn−1,Vn) in a
weighted graph is defined as

w(p) :=
n∑

j=1

w(Vj−1,Vj).

Definition (Distance between Vertices)

The distance d(V ,W) between two vertices V and W is defined as
the length of the shortest path p = (V0,V1), (V1,V2), . . . , (Vn−1,Vn)
that connects V and W :.

d(V ,W) = min
{

w(p) : p = (V0,V1), (V1,V2), . . . , (Vn−1,Vn),

∀j : (Vj−1,Vj) ∈ E ,V = V0,W = Vn
}

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 3

Technische Universität München

All-Pairs Shortest Path

For non-weighted graphs: (try this at home!)
BF-traversal finds the shortest path from a starting node to all
connected nodes.
→ is there an efficient algorithm to find the shortest path from all

nodes to all other nodes? (“all-pairs shortest path”)
→ is there an efficient algorithm to find which nodes are connected

by a path of length l?
→ is there an efficient algorithm to find which nodes are connected

by only the first k nodes? (assuming an ordering of the nodes)

For weighted graphs:
Generalize the last idea for weighted graphs
→ Incrementally construct shortest paths from nodes connected by

only the first k nodes
→ We will implement the algorithm for directed graphs

(modifying it for undirected graphs is straightforward)
H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 4

Technische Universität München

Floyd’s Algorithm

Floyd bas ic (W: Array [1 . . n , 1 . . n]) {
! I npu t : weight / adjacency mat r i x W
! assume : W[i , j] = i n f , i f i not connected to j
! Output : W[i , j] sho r t es t pa r t from i to j

for k from 1 to n do
! check f o r a l l (i , j) whether a sho r te r path e x i s t s
! t h a t runs through ver tex k
for i from 1 to n do

for j from 1 to n do
W[i , j] = min (W[i , k]+W[k , j] , W[i , j])

end do
end do

end do
}

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 5

Technische Universität München

Floyd’s Algorithm (2)

Disadvantages of Floyd basic:
• input array W is overwritten
• we get the length of the shortest path, but not the path itself!

Floyd (W: Array [1 . . n , 1 . . n] ,
S : Array [1 . . n , 1 . . n] , P : Array [1 . . n , 1 . . n]) {

! Output : S w i l l con ta in leng ths
! P a l lows to recons t ruc t sho r t es t path
for i from 1 to n do

for j from 1 to n do
S[i , j] = W[i , j]
P [i , j] = 0

end do
end do

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 6

Technische Universität München

Floyd’s Algorithm (3)

! main loop of Floyd () :
for k from 1 to n do

for i from 1 to n do
for j from 1 to n do

i f S[i , k] + S [k , j] < S[i , j] then
S[i , j] = S [i , k] + S [k , j] ;
! memorize connect ion v ia k
P [i , j] = k ;

end i f
end do

end do
}

Use array P to reconstruct shortest path:
• P[i,j] indicates that shortest path runs through vertex k
• check P[i,k] and P[k,j] for further info

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 7

Technische Universität München

Floyd’s Algorithm – Correctness

Ingredients:
• Optimality Principle:

If the shortest path between nodes A and B visits a node C,
then this path consists of the shortest paths between A and C,
and between C and B.

• No cycles:
The shortest path between any two nodes does not contain a
cycle, i.e., contains any node at most once.
→ while edges are allowed to have negative weights,

cycles must not lead to negative weight
• Loop Invariant for the k-loop:

At entry of the k-loop, S[i , j] contains (for every pair i,j)
the length of the shortest path between i and j
that only visits nodes with index smaller than k.

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 8

Technische Universität München

Floyd’s Algorithm on the PRAM

FloydPRAM (W: Array [1 . . n , 1 . . n]) {
for k from 1 to n do

for i from 1 to n do in p a r a l l e l
for j from 1 to n do in p a r a l l e l

i f W[i , k]+W[k , j] < W[i , j]
then W[i , j] = W[i , k]+W[k , j]

end do
end do

end do
}

Classify concurrent/exclusive read/write?
• concurrent read to row W[∗,k] and column W[k,∗]

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 9

Technische Universität München

Dijkstra’s Algorithm for Shortest Paths

Problem setting: “single-source shortest path”
• given is a directed graph G = (V ,E) and a start vertex r ∈ V
• we want to compute the shortest path from r to each vertex in G

that is reachable from r
→ this is a spanning tree of shortest paths

Idea: “Greedy Algorithm”
• maintain a spanning tree S of vertices and “explored” shortest

paths
• maintain a set Q = V \ S of unexplored vertices
• for each v ∈ Q, determine the shortest path to v that can be

obtained by adding a single edge to the spanning tree S
• add vmin (with shortest path) to S and update Q
• repeat until all vertices are in the explored path

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 10

Technische Universität München

Dijkstra’s Algorithm – Implementation

Spanning Tree S of Shortest Paths
• use an array Parent[1..n] for the n vertices
• Parent[i] contains the parent of vertex i in the spanning tree

Set Q of Unexplored Vertices
• accompanied by an array Dist [1.. n]
• Dist [i] contains the shortest path to vertex i that adds only one

edge to S
• we will need to update Dist [1.. n] after each change of Q
• for vertices i 6∈ Q, Dist [i] is the length of the shortest path

(i.e., they will not be further considered; therefore weights must
not be negative!)

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 11

Technische Universität München

Dijkstra’s Algorithm – Implementation (2)

D i j k s t r a (W: Array [1 . . n , 1 . . n] , r : Node) {
! i n i t i a l i s e data s t r u c t u r e s
Array Parent [1 . . n] ;
Array Dis t [1 . . n] ;
for i from 1 to n do

Dis t [i] = i n f ;
end do ;
! i n i t Parent and D is t f o r roo t r :
Parent [r] = 0 ;
D i s t [r] = 0 ;
! i n i t se ts o f explored and unexplored v e r t i c e s
Set S = {} ;
Set Q = {1 , . . , n } ;
! . . . to be cont inued . . .

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 12

Technische Universität München

Dijkstra’s Algorithm – Implementation (3)

! main loop of D i j k s t r a (. . .)
while Q <> {} do

! remove node wi th sma l les t D i s t [] from Q
X = removeSmallest (Q, D i s t) ;
S = union (S,X) ;
! X i s added to S, thus update D is t :
f o r a l l (X,V) in X. edges do

i f V in S then continue ;
! update neighbours o f X t h a t are not i n S :
d := D is t [X . key] + W[X. key ,V . key) ;
i f d < Dis t [V . key] then

Dis t [V . key] := d ;
Parent [V . key] := X . key ;

end i f
end do ;

end while ;
}

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 13

Technische Universität München

Dijkstra’s Algorithm – Comments

• Why do we not update Dist [X.key] and Parent[X.key]?
→ this was already set in the previous iteration of the while-loop

• how do we obtain the shortest path?
→ via the Parent[] array:

shor tes tPath (key : I n t) : L i s t {
i f Parent [key] = 0
then return [key]
else return append (shor tes tPath (Parent [key]) , key) ;
end i f ;

}

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 14

Technische Universität München

Dijkstra’s Algorithm – Complexity
Priority Queues:

• How is the function removeSmallest implemented?
• Idea: sort elements of Q according to array Dist
• ToDo: Update sorting of Q after changes to Dist

i f d < Dis t [V . key] then
Parent [V . key] := X . key ;
D i s t [V . key] := d ;
updateSor t ing (Q, Dis t ,V) ;

end i f

• integrated data structure for such purposes: priority queue

Complexity of Dijkstra’s Algorithm:
• a complexity of Θ(|E |+ |V | log |V |) is possible
• for dense graphs, |E | ∈ Θ|V |2, the complexity is thus Θ(|V |2)

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 15

Technische Universität München

Dijkstra – Single Source, Single Destination
Single Source, All Destinations:

• we can terminate Dijkstra’s Algorithm after the destination node
has been removed from Q:

X = removeSmallest (Q, D i s t) ;
i f X = d e s t i n a t i o n then return X;

• otherwise Dijkstra’s Algorithm finds the shortest path from the
source to all nodes in the graph.

Question:
Can Dijkstra’s Algorithm be improved, if the shortest path to only one
specific destination is wanted?

• or more general: is there a better algorithm to solve the
single-source-single-destination problem?

→ there is no algorithm known that is asymptotically faster

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 16

Technische Universität München

Minimum Spanning Tree

Definition (Minimum Spanning Tree)

A spanning tree T = (V ,E) is called a minimum spanning tree for
the graph G = (V ,E ′), if the sum of the weights of all edges of T is
minimal (among all possible spanning trees).

Towards an Algorithm:
• Dijkstra’s Algorithm computes a spanning tree of shortest paths
• Idea: modify Dijkstra’s “greedy approach”
→ successively add edges to a subtree

• minimise total weight of edges instead of path lengths
→ add node that is closest to the current subtree

⇒ Prim’s Algorithm

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 17

Technische Universität München

Prim’s Algorithm

Prim (W: Array [1 . . n , 1 . . n] , r : Node) {
! i n i t i a l i s e data s t r u c t u r e s
Array Parent [1 . . n] ;
Array Nearest [1 . . n] ; ! rep laces D is t
for i from 1 to n do

Nearest [i] = i n f ;
end do ;
! i n i t Parent and D is t f o r roo t r :
Parent [r] = 0 ;
Nearest [r] = 0 ;
! i n i t se ts o f explored and unexplored v e r t i c e s
Set S = {} ;
Set Q = {1 , . . , n } ;
! . . . to be cont inued . . .

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 18

Technische Universität München

Prim’s Algorithm (2)

! main loop of Prim (. . .)
while Q <> {} do

! remove nearest node from Q
X = removeNearest (Q, Nearest) ;
S = union (S,X) ;
! X i s added to S, thus update Nearest :
f o r a l l (X,V) in X. edges do

i f V in S then continue ;
! update neighbours o f X t h a t are not i n S :
i f W[X. key ,V . key] < Nearest [V . key] then

Nearest [V . key] := W[X. key ,V . key] ;
Parent [V . key] := X . key ;

end i f
end do ;

end while ;
}

H. Räcke: Fundamental Algorithms

Chapter 9: Weighted Graphs, Winter 2015/16 19

	Weighted Graphs

