Fundamental Algorithms

Chapter 9: Weighted Graphs

Harald Räcke

Winter 2015/16

Weighted Graphs

Definition (Weighted Graph)
A weighted graph $G=(V, E)$ is attributed by a function w that assigns a weight $w(e)$ to each edge $e \in E$.

Comments

- typically: $w(e)>0$ or $w(e) \geq 0$ (but negative weights possible)
- we will consider weighted graphs with $w: E \rightarrow \mathbb{N}$
- notation: we will also write $w(V, W)$, instead of $w((V, W))$, for the weight $w(e)$ of the edge $e=(V, W)$
- examples: traffic networks, costs for routing, etc.

Shortest Path

Definition (Length of a Path)

The length of a path $p=\left(V_{0}, V_{1}\right),\left(V_{1}, V_{2}\right), \ldots,\left(V_{n-1}, V_{n}\right)$ in a weighted graph is defined as

$$
\bar{w}(p):=\sum_{j=1}^{n} w\left(V_{j-1}, V_{j}\right)
$$

Definition (Distance between Vertices)

The distance $d(V, W)$ between two vertices V and W is defined as the length of the shortest path $p=\left(V_{0}, V_{1}\right),\left(V_{1}, V_{2}\right), \ldots,\left(V_{n-1}, V_{n}\right)$ that connects V and W :.

$$
\begin{aligned}
d(V, W)=\min \{\bar{w}(p): & p=\left(V_{0}, V_{1}\right),\left(V_{1}, V_{2}\right), \ldots,\left(V_{n-1}, V_{n}\right), \\
& \left.\forall j:\left(V_{j-1}, V_{j}\right) \in E, V=V_{0}, W=V_{n}\right\}
\end{aligned}
$$

All-Pairs Shortest Path

For non-weighted graphs: (try this at home!)
BF-traversal finds the shortest path from a starting node to all connected nodes.
\rightarrow is there an efficient algorithm to find the shortest path from all nodes to all other nodes? ("all-pairs shortest path")
\rightarrow is there an efficient algorithm to find which nodes are connected by a path of length $/$?
\rightarrow is there an efficient algorithm to find which nodes are connected by only the first k nodes? (assuming an ordering of the nodes)

For weighted graphs:

Generalize the last idea for weighted graphs
\rightarrow Incrementally construct shortest paths from nodes connected by only the first k nodes
\rightarrow We will implement the algorithm for directed graphs (modifying it for undirected graphs is straightforward)

Floyd's Algorithm

```
Floyd_basic (W: Array [1..n,1..n])
    ! Input: weight/adjacency matrix W
    ! assume: W[i,j] = inf, if i not connected to j
    ! Output:W[i,j] shortest part from i to j
    for k from 1 to n do
        check for all (i,j) whether a shorter path exists
        ! that runs through vertex k
    for i from 1 to n do
        for j from 1 to n do
            W[i,j] = min(W[i,k]+W[k,j],W[i,j] )
        end do
    end do
end do
}
```


Floyd's Algorithm (2)

Disadvantages of Floyd_basic:

- input array W is overwritten
- we get the length of the shortest path, but not the path itself!

```
Floyd (W: Array [1..n, 1..n],
                S:Array[1..n,1..n], P:Array[1..n,1..n]) \{
    Output: S will contain lengths
! P allows to reconstruct shortest path
for i from 1 to n do
    for j from 1 to n do
    \(S[i, j]=W[i, j]\)
    \(P[i, j]=0\)
    end do
end do
```


Floyd's Algorithm (3)

```
! main loop of Floyd():
for \(k\) from 1 to \(n\) do
    for i from 1 to n do
        for j from 1 to n do
            if \(S[i, k]+S[k, j]<S[i, j]\) then
            \(S[i, j]=S[i, k]+S[k, j] ;\)
                ! memorize connection via k
                \(P[i, j]=k ;\)
            end if
        end do
    end do
```

\}

Use array P to reconstruct shortest path:

- P[i,j] indicates that shortest path runs through vertex k
- check $P[i, k]$ and $P[k, j]$ for further info

Floyd's Algorithm - Correctness

Ingredients:

- Optimality Principle:

If the shortest path between nodes A and B visits a node C, then this path consists of the shortest paths between A and C, and between C and B.

- No cycles:

The shortest path between any two nodes does not contain a cycle, i.e., contains any node at most once.
\rightarrow while edges are allowed to have negative weights, cycles must not lead to negative weight

- Loop Invariant for the k-loop:

At entry of the k-loop, $S[i, j]$ contains (for every pair i, j) the length of the shortest path between i and j that only visits nodes with index smaller than k.

Floyd's Algorithm on the PRAM

```
FloydPRAM (W: Array [ \(1 . . \mathrm{n}, 1 . . \mathrm{n}])\) \{
    for \(k\) from 1 to \(n\) do
        for \(i\) from 1 to \(n\) do in parallel
                for j from 1 to n do in parallel
            if \(W[i, k]+W[k, j]<W[i, j]\)
                then \(W[i, j]=W[i, k]+W[k, j]\)
                end do
        end do
    end do
\}
```

Classify concurrent/exclusive read/write?

- concurrent read to row $\mathrm{W}[*, \mathrm{k}]$ and column $\mathrm{W}[\mathrm{k}, *]$

Dijkstra's Algorithm for Shortest Paths

Problem setting: "single-source shortest path"

- given is a directed graph $G=(V, E)$ and a start vertex $r \in V$
- we want to compute the shortest path from r to each vertex in G that is reachable from r
\rightarrow this is a spanning tree of shortest paths
Idea: "Greedy Algorithm"
- maintain a spanning tree S of vertices and "explored" shortest paths
- maintain a set $Q=V \backslash S$ of unexplored vertices
- for each $v \in Q$, determine the shortest path to v that can be obtained by adding a single edge to the spanning tree S
- add $v_{\text {min }}$ (with shortest path) to S and update Q
- repeat until all vertices are in the explored path

Dijkstra's Algorithm - Implementation

Spanning Tree S of Shortest Paths

- use an array Parent[1..n] for the n vertices
- Parent[i] contains the parent of vertex i in the spanning tree

Set Q of Unexplored Vertices

- accompanied by an array Dist [1.. n]
- Dist[i] contains the shortest path to vertex i that adds only one edge to S
- we will need to update Dist [1..n] after each change of Q
- for vertices $i \notin Q$, Dist $[i]$ is the length of the shortest path (i.e., they will not be further considered; therefore weights must not be negative!)

Dijkstra's Algorithm - Implementation (2)

```
Dijkstra(W: Array[1..n,1..n], r:Node) {
    ! initialise data structures
    Array Parent[1..n];
    Array Dist[1..n];
    for i from 1 to n do
    Dist[i] = inf;
end do;
    ! init Parent and Dist for root r:
    Parent[r] = 0;
    Dist[r] = 0;
    ! init sets of explored and unexplored vertices
    Set S = {};
    Set Q = {1, .., n};
    ! ... to be continued ...
```


Dijkstra's Algorithm - Implementation (3)

```
! main loop of Dijkstra(...)
while \(Q<>\{ \}\) do
    ! remove node with smallest Dist[] from \(Q\)
    X = removeSmallest(Q, Dist);
    \(S=\) union \((S, X)\);
    \(X\) is added to \(S\), thus update Dist:
    forall ( \(\mathrm{X}, \mathrm{V}\) ) in X.edges do
    if \(V\) in \(S\) then continue;
    ! update neighbours of \(X\) that are not in \(S\) :
    d := Dist[X.key] + W[X.key, V.key);
        if d < Dist[V.key] then
        Dist[V.key] := d;
        Parent[V.key] := X.key ;
        end if
    end do;
end while;
```


Dijkstra's Algorithm - Comments

- Why do we not update Dist[X.key] and Parent[X.key]?
\rightarrow this was already set in the previous iteration of the while-loop
- how do we obtain the shortest path?
\rightarrow via the Parent[] array:
shortestPath(key:Int) : List \{
if Parent[key] = 0
then return [key]
else return append(shortestPath(Parent[key]), key); end if;
\}

Dijkstra's Algorithm - Complexity

Priority Queues:

- How is the function removeSmallest implemented?
- Idea: sort elements of Q according to array Dist
- ToDo: Update sorting of Q after changes to Dist

```
if d < Dist[V.key] then
    Parent[V.key] := X.key ;
    Dist[V.key] := d;
    updateSorting(Q, Dist,V);
end if
```

- integrated data structure for such purposes: priority queue

Complexity of Dijkstra's Algorithm:

- a complexity of $\Theta(|E|+|V| \log |V|)$ is possible
- for dense graphs, $|E| \in \Theta|V|^{2}$, the complexity is thus $\Theta\left(|V|^{2}\right)$

Dijkstra - Single Source, Single Destination

Single Source, All Destinations:

- we can terminate Dijkstra's Algorithm after the destination node has been removed from Q:

$$
\begin{aligned}
& X=\text { removeSmallest }(Q \text {, Dist }) \text {; } \\
& \text { if } X=\text { destination then return } X \text {; }
\end{aligned}
$$

- otherwise Dijkstra's Algorithm finds the shortest path from the source to all nodes in the graph.

Question:

Can Dijkstra's Algorithm be improved, if the shortest path to only one specific destination is wanted?

- or more general: is there a better algorithm to solve the single-source-single-destination problem?
\rightarrow there is no algorithm known that is asymptotically faster

Minimum Spanning Tree

Definition (Minimum Spanning Tree)

A spanning tree $T=(V, E)$ is called a minimum spanning tree for the graph $G=\left(V, E^{\prime}\right)$, if the sum of the weights of all edges of T is minimal (among all possible spanning trees).

Towards an Algorithm:

- Dijkstra's Algorithm computes a spanning tree of shortest paths
- Idea: modify Dijkstra's "greedy approach"
\rightarrow successively add edges to a subtree
- minimise total weight of edges instead of path lengths
\rightarrow add node that is closest to the current subtree
\Rightarrow Prim's Algorithm

Prim's Algorithm

```
Prim(W: Array [1..n,1..n], r:Node) {
    ! initialise data structures
    Array Parent[1..n];
    Array Nearest[1..n]; ! replaces Dist
    for i from 1 to n do
    Nearest[i] = inf;
    end do;
    ! init Parent and Dist for root r:
    Parent[r] = 0;
    Nearest[r] = 0;
    ! init sets of explored and unexplored vertices
    Set S = {};
    Set Q = {1, .., n};
    ! ... to be continued ...
```


Prim's Algorithm (2)

```
! main loop of Prim (...)
while \(Q<>\{ \}\) do
    ! remove nearest node from Q
    \(X=\) removeNearest(Q, Nearest);
    \(S=\) union \((S, X)\);
    ! \(X\) is added to \(S\), thus update Nearest:
    forall ( \(\mathrm{X}, \mathrm{V}\) ) in X.edges do
    if \(V\) in \(S\) then continue;
            update neighbours of \(X\) that are not in \(S\) :
            if W[X.key, V. key] < Nearest[V.key] then
                Nearest[V.key] := W[X.key,V.key];
                Parent[V.key] := X.key ;
            end if
    end do;
end while;
```

\}

