
Dynamic Planar Convex Hull

Gerth Stølting Brodal 1,2

BRICS, Department of Computer Science, University of Aarhus, Ny Munkegade,
8000 Århus C, Denmark. 3

Riko Jacob 1

Database and Information Systems Group, University of Munich (LMU), Institute
for Computer Science, Oettingenstr. 67, 80538 München, Germany.

Abstract

In this paper we determine the amortized computational complexity of the dynamic
convex hull problem in the planar case. We present a data structure that maintains
a finite set of n points in the plane under insertion and deletion of points in amor-
tized O(log n) time per operation. The space usage of the data structure is O(n).
The data structure supports extreme point queries in a given direction, tangent
queries through a given point, and queries for the neighboring points on the convex
hull in O(log n) time. The extreme point queries can be used to decide whether or
not a given line intersects the convex hull, and the tangent queries to determine
whether a given point is inside the convex hull. We give a lower bound on the
amortized asymptotic time complexity that matches the performance of this data
structure.

Key words: Planar computational geometry, dynamic convex hull, lower bound,
data structure, search trees, finger searches

Email addresses: gerth@brics.dk (Gerth Stølting Brodal), rjacob@brics.dk
(Riko Jacob).

URLs: www.brics.dk/~gerth (Gerth Stølting Brodal), www.brics.dk/~rjacob
(Riko Jacob).
1 Partially supported by the Future and Emerging Technologies programme of the
EU under contract number IST-1999-14186 (ALCOM-FT). Work done while staying
at BRICS.
2 Supported by the Carlsberg Foundation (contract number ANS-0257/20).
3 BRICS: Basic Research in Computer Science, www.brics.dk, funded by the Dan-
ish National Research Foundation.

Preprint submitted to Elsevier Science 2 March 2003

1 Introduction

The convex hull of a set of points in the plane is one of the most prominent
objects in computational geometry. It is defined as the convex polygon having
vertices on points of the set, such that all the points of the set are inside the
polygon. Computing the convex hull of a static set of n points can be done
in optimal O(n log n) time, e.g., with Graham’s scan (1) or Andrew’s vertical
sweep line variant (2) of it. Optimal output sensitive algorithms are due to
Kirkpatrick and Seidel (3) and also to Chan (4), who achieve O(n log h) time,
where h denotes the number of vertices on the convex hull.

In the dynamic setting we consider a set S of points in the plane that is changed
by insertions and deletions. Observing that a single insertion or deletion can
change the convex hull of S by |S| − 2 points, reporting the changes to the
convex hull is in many applications not desirable. Instead of reporting the
changes one maintains a data structure that allows queries for points on the
convex hull. Typical examples are the extreme point in a given direction ~a, the
tangent(s) on the hull that passes through a given point pe, whether or not a
point pc is inside the convex hull, the segments of the convex hull intersected
by a given line `b, the bridges (common tangents) between another convex
hull C. These queries are illustrated in Figure 1. Furthermore we might want
to report (some consecutive subsequence of) the points on the convex hull or
count their cardinality.

`b

~a

pc

pe

C

Fig. 1. Different queries on the convex hull of a set of points.

Overmars and van Leeuwen (5) provide a solution that uses O(log2 n) time
per update operation and maintains a leaf-linked balanced search tree of the
vertices on the convex hull in clockwise order. Such a tree allows all of the
above mentioned queries in O(log n) time. The leaf-links allow to report k
consecutive points on the convex hull (between two directions, tangent lines
or alike) in O(log n + k) time. Semidynamic variants of the problem have
been considered. There, updates are restricted to be either insertions only or
deletions only. For the insertion-only problem Preparata (6) gives an O(log n)
worst-case time algorithm that maintains the vertices of the convex hull in a
search tree. The deletion-only problem is solved by Hershberger and Suri (7),
where initializing the data structure (build) with n points and up to n deletions
are accomplished in overall O(n log n) time. Hershberger and Suri (8) also

2

consider the off-line variant of the problem, where both insertions and deletions
are allowed, but the times (and by this the order) of all insertions and deletions
are known a priori. The algorithm processes a list of insertions and deletions
in O(n log n) time and space, and produces a data structure that can answer
extreme point queries for any time using O(log n) time. Their data structure
does not provide an explicit representation of the convex hull in terms of a
search tree with the points on the convex hull. The space usage can be reduced
to O(n) if the queries are also part of the off-line information.

Chan (9) gives a construction for the fully dynamic problem with O(log1+ε n)
amortized time for updates (for any constant ε > 0), and O(log n) time for
extreme point queries. His construction does not maintain an explicit repre-
sentation of the convex hull. It is based on a general dynamization technique
attributed to Bentley and Saxe (10). Using the semidynamic deletions-only
data structure of Hershberger and Suri (7), and a constant number of boot-
strapping steps, the construction achieves update times of O(log1+ε n) for any
constant ε > 0. To support queries this construction uses an augmented vari-
ant of an interval tree to store the convex hulls of the semidynamic deletion
only data structures. The authors of the present paper in (11) and indepen-
dently Kaplan, Tarjan and Tsioutsiouliklis (12) improve the amortized update
time to O(log n log log n). The improved update time in (11) is achieved by
reconsidering the framework of Chan (9), and by constructing a semidynamic
deletion-only data structure that is adapted better to the particular use. More
precisely the semidynamic data structure supports build in O(n) time under
the assumption that the points are already lexicographically sorted. Deletions
cost O(log n log log n) amortized time. All these data structures have O(n)
space usage.

The main result of this paper is a fully dynamic planar convex hull data
structure:

Theorem 1 There exists a data structure for the fully dynamic planar convex
hull problem supporting insertions and deletions in amortized O(log n) time,
and extreme point queries, tangent queries and neighboring-point queries in
O(log n) time, where n denotes the size of the stored set before the operation.
The space usage is O(n).

This is complemented with a matching lower bound: 4

Theorem 2 Assume there is a semidynamic insertion-only convex hull data
structure on the real-RAM, that supports extreme point queries in amortized q(n)
time, and insertions in amortized I(n) time for size parameter n. Assume
that q and I are non-decreasing functions.

4 Both results are published in a conference version (13), and in the PhD-Thesis of
Riko Jacob (14).

3

Then we have q(n) = Ω(log n) and I(n) = Ω(log(n/q(n))).

This implies that queries have to take (amortized) Ω(log n) time and that
insertions also have to take amortized Ω(log n) time, as long as queries take
amortized time O(n1−ε). Note that this result is stronger than just applying
the well known lower bound Ω(n log n) for the static convex hull computation,
as presented for example in the textbook by Preparata and Shamos (15). It
implies in the dynamic setting only that the sum of the amortized running
times of insertion and next-neighbor query is Ω(log n).

For a finite set A of points in the plane, the convex hull of A naturally decom-
poses into an upper and a lower part of the hull. In the remaining of the paper
we work only with the upper hull, the lower hull is completely symmetrical.
To represent the convex hull we store every point of A in two data structures,
one that maintains access to the upper hull, and one for the lower hull. This
allows us to answer the mentioned queries on the convex hull. To simplify
the exposition, we extend the upper hull of A to also include two vertical
half-lines as segments, one extending from the leftmost point of A vertically
downward, and another one extending downward from the rightmost point.
The set of points that are on segments and vertices of the upper hull of A
are denoted as Bd(A), the vertices of the upper hull as UV(A) ⊆ A, and the
interior of the upper hull as UC0(A), and the upper hull together with its
interior as UC(A)—the upper closure of A.

1.1 Duality, kinetic heaps and applications

There is a close connection between the upper hull of some points and the lower
envelope of some corresponding lines. We define (as is standard, see e.g. (16))
the dual transform of point p = (a, b) ∈ R2 to be the line p∗ := (y = a ·x−b).
For a set of points S the dual S∗ consists of the lines dual to the points
in S. This concept is illustrated in Figure 2. The slope of a non-vertical line
(y = a · x + b) is the value of the parameter a.

Every non-vertical line in the plane is the graph of a linear function. For a
finite set L of linear functions the point-wise minimum mL(t) = minl∈L l(t)
is a piecewise linear function. The graph of mL is called the lower envelope
of L. A line l ∈ L is on the lower envelope of L if it defines one of the linear
segments of mL. The essential properties of the duality transformation are
captured in the following Lemma.

Lemma 3 Let S be a set of points in the plane. We have p ∈ UV(S) if and
only if p∗ is on the lower envelope of S∗. The left-to-right order of points
on UV(S) is the same as the right-to-left order of the segments of the lower
envelope. The extreme-point query on UV(S) in direction q = (−α, 1) (the

4

dual plane
a∗

b∗

c∗

l∗

x

y

d∗

e∗

q∗

a

b

c

ly

x

primal plane

d

e

q

Fig. 2. Duality of points and lines. q stands for an extreme point query in the primal
setting, q∗ is the corresponding query in the dual setting.

answer tangent line has slope α) is equivalent to evaluating mS∗(α).

A (dynamic) planar lower envelope is frequently understood as a parametric
heap, a generalization of a priority queue. We think of the linear functions as
values that change linearly over time. The find-min operation of the priority
queue generalizes to evaluating mS∗(t), the update operations amount to in-
sertions and deletions of lines. The data structure we summarize in Theorem 1
allows update and query in amortized O(log n) time.

A kinetic heap is a parametric heap with the restriction that the argument
(time) of (kinetic) queries may not decrease between two queries. This natu-
rally leads to the notion of a current time for queries. In Section 8 we describe
a data structure that can answer kinetic queries in amortized O(1) time and
updates in amortized O(log n) time.

Several geometric algorithms use a parametric (kinetic) heap to store lines.
In some cases the function-calls to this data structure dominate the overall
execution time. Then our improved data structure immediately improves the
algorithm. One such example is the algorithm by Edelsbrunner and Welzl (17)
solving the k-level problem in the plane. The problem is in the dual setting and
is given by a set S of n non-vertical lines in the plane. For every vertical line
we are interested in the k-th lowest intersection with a line of S. The answer
is given by a collection of line-segments from lines of S. This generalizes the
notion of a lower envelope (k = 1) and an upper envelope (k = n). The
situation is exemplified in Figure 3.

As discussed by Chan (18) we can use two fully dynamic kinetic heaps to
produce the k-level of a set of n lines. If we have m segments on the k-level
(the output size), the algorithm using the data structure of the present paper

5

Fig. 3. The 2-level of 5 lines in the plane. Note that the 2-level consists of 7 segments,
two of the lines define two separate segments.

completes in O((n + m) log n) time. This improves over the fastest determin-
istic algorithms, (Edelsbrunner and Welzl (17), using Chan’s data structure
achieving O(n log n + m log1+ε n) time). It is faster than the expected run-
ning time O((n+m)α(n) log n) of the randomized algorithm of Har-Peled and
Sharir (19). Here α(n) is the slow growing inverse of Ackerman’s function.

1.2 Algorithmic model

The model of computation is the algebraic real-RAM, as for example intro-
duced in the textbook by Preparata and Shamos (15). The presented algo-
rithm/data structure is formulated for the real-RAM, but it actually only
requires only to evaluate the sign of constant degree polynomials on the coor-
dinates of the input points. (Auxiliary lines are defined by two input points,
hence every decision considers only a constant number of input points.)

We simplify the exposition here by assuming that the points are in general
position, i.e., no three input points are on one line, and no three lines defined
by input points meet in one point. This avoids most of the special cases,
for example a point can only be above or below a line defined by two other
points, but not on it. This assumption really only simplifies the exposition,
we can always treat the degenerate cases explicitly, extending the described
data structure and algorithms in a straightforward manner. We discuss further
aspects of this in Section 7.

6

1.3 Structure of the paper

Section 2 gives the proof of Theorem 1, describing the overall performance
of the proposed data structure. There we only state the function of the two
main components, the geometric merging and the interval-tree. Sections 4,5,6
describe the geometric merging. Section 9 describes the interval-tree, preceded
by Section 8 that discusses the somewhat simpler case of a kinetic heap. Sec-
tion 3 focuses on the variant of a search tree we use for the geometric merging,
Section 7 discusses issues of avoiding the general-position assumption, and
Section 10 discusses the lower bound results.

2 Outline of the main data structure

The core of the present paper is a data structure for the dynamic planar
convex hull problem. This section describes how different components of the
data structure work together to achieve Theorem 1.

Using a doubling technique we regularly rebuild the whole data structure.
This allows us to assume that we know in advance some n such that the
number of points to be stored in the data structure is between n/4 and n. We
assume n = 2k for some integer k ≥ 2 such that log n ≥ 2 and log log n ≥ 1.
Throughout the paper log stands for the binary logarithm.

We keep the points in semidynamic deletions-only data structures, using the
logarithmic method of Bentley and Saxe (10). Insertions create semidynamic
sets of rank 1, containing only the inserted point. As soon as we have log n sets
of identical rank r we merge them into one set of rank r+1. This achieves that
every point participates in at most O(log n/ log log n) merge operations, and
that we have at most O(log2 n/ log log n) semidynamic sets simultaneously.
This basic approach for the data structure was first used by Chan (9) (with a
different merging degree), and is the same as in (11; 12).

q∗

Fig. 4. Illustrating the task of joining several lower envelopes for the purpose of a
fast query, and the connection to intervals.

7

To achieve O(log n) queries we use a version of an interval tree to simul-
taneously query the dual envelopes of the upper hulls of the sets stored in
the semidynamic data structures. This is illustrated in Figure 4. We give the
full functionality off the interval-tree in Section 2.2, and the full description
in Section 9. The different pieces of the construction, and how they interact
is schematically depicted in Figure 5. The whole construction is a speed-up
construction for the deletion-time, the interval-tree uses secondary structures,
fully dynamic planar convex hull data structures, that store polylogarithmi-
cally many points. Two bootstrapping steps achieve the claimed amortized
deletion time of O(log n).

query

DPCH
secondary
structure

Dynamic Planar Convex Hull (DPCH)

Interval Tree

Semidynamic CH

Merge

Insert

Delete

upper hull
log2 n

Logarithmic
Method

degree log n
n → log8 n → log n

deletions
Bootstrapping

Fig. 5. A schematic depiction of the different components of the fully dynamic
convex hull data structure.

The merging technique for the semidynamic sets is the real novelty of the
present paper. We simulate a merging of log n sets by binary merging along a
balanced binary tree of height O(log log n). When merging two semidynamic
sets we do not only reuse some information about the stored points (like the
lexicographical ordering of the points as in (11)), but we continue to use the
whole semidynamic data structures. We avoid storing the points simultane-
ously in several semidynamic binary merging data structures by extracting the
current upper hull from the already existing data structures that get merged.
We give more details on this process in Section 2.1, describing the geometric
concepts common to merging and extracting in Section 4, and finally describe
the algorithm for extracting in Section 5 and for binary merging in Section 6.

We assume that only points on the upper hull of one of the semidynamic
sets get deleted. If the point we want to delete is not on the upper hull, we
delay its deletion until it becomes part of the upper hull (or the complete

8

data structure is rebuild). This does not affect the amortized performance
of the data structure, because the test for being on the upper hull of the
semidynamic set is easy, since the upper hulls of the semidynamic sets are
explicitly maintained.

2.1 Semidynamic binary merging data structure

We consider a data structure that supports the following operations

Definition 1 (Semidynamic Merging Structure)

create set(p) The point p in the plane is given by its (x, y) coordinates.
Creates a set A := {p}, UV(A) := (p); Returns a pointer to the data struc-
ture representing A and a pointer to the representation of the point p, its
base record.

merge(A, B) The sets A and B are given by a pointer to their merging data
structures. Creates a new merging data structure for the set C = A ∪ B.
The upper hull of the points stored in C can be accessed in left to right order
in a doubly linked list. The data structures representing A and B are from
now on only accessible from inside the newly created data structure for C.

delete(r) Removes the point p referenced to by r from the merging-structure.
Returns the list L of points that replaces p on the upper hull.

The attribute “semidynamic” for this data structure has to be taken with a
grain of salt: we can insert a point into data structure A by first creating a
set B containing it, and then merging A and B. But this is not the intended
use of the data structure, its efficiency relies upon the merging being along a
balanced tree (as resulting from the dynamization technique), by this limiting
the number of merge operations a point participates in.

More concretely every semidynamic set has a history of merge operations that
defines the binary merging tree T in the following way. The data structure
stemming form the operation create set(p) corresponds to a leave u with the
set Au = {p}. The resulting data structure of merge(U, V), where U and V
correspond to the nodes u and v of the merging tree, corresponds to the node w
of T . The children of w are u and v, and we define Aw = Au ∪ Av. At the
root r of T we have the set of all (ever inserted) points of the semidynamic
set, Ar.

If points get deleted they are by assumption on the upper hull of the semidy-
namic set, hence stored at the root node. Such a deletion is not different from
an extraction of a point because it is on the upper hull of a merged set. Let R
be the set of all deleted points on the overall upper hull of the semidynamic

9

set, not including points extracted from lower levels.

Now we describe the process of extracting the points of the upper hull from the
used data structures. As part of of the merge(U, V) operation we determine
the upper hull L = UV(Aw \R). Then we remove the points of L respectively
from U and V , leading to an update of their upper hulls, and by this possibly to
deletions on data structure for the children (and recursively the descendants)
of u and v.

Let Dv be the set of points that provided as the upper hull by the data
structure corresponding to node v. Denote with Pv the set of all nodes of T
that are ancestors of v, i.e., on the path from the parent of v to the root. Then
we have

Dv = UV(Av \ (R ∪
⋃

u∈Pv

Du)) ,

recursively defined, starting at the root, where we have Dr = UV(Ar \R).

For Tv denoting the set of nodes of the subtree rooted at v, we have Dv =
UV(

⋃
u∈Tv

Du), i.e., the upper hull of the points stored at nodes of Tv is the
set Dv.

In Section 4 we describe a data structure for this task, its performance is
summarized in the following theorem.

Theorem 4 (Semidynamic Binary Merging Structure)
There exists a data structure that implements the operations as described in
Definition 1. Let L denote the upper hull of the The operation create set(p)
takes O(1) time. The operation merge(a, b) takes amortized time O(|A|+|B|).
The operation delete(r) takes amortized O(d(r)) time, where d(r) is the
depth in the merging tree of the leaf storing {r}, when r gets on the upper
hull. The space usage of the data structure is linear in the number of stored
points, including the space used in the data structures storing A and B.

The complicated description of d(r) stems from the delayed deletion of points
that are not yet on the overall upper hull. It is no problem because the doubling
techniques gives us access to the number of points n, and the logarithmic
method gives rise to a binary merging tree of height O(log n).

This data structure has two components. The geometric merging is responsi-
ble for computing and maintaining the upper hull of the two recursive data
structures. The extractor is responsible for maintaining the upper hulls Dv,
and deleting all points on the upper hull from the merging part (and by this
from the recursive data structures).

10

2.2 Fast queries

In order to achieve fast queries, we create an interval tree that allows si-
multaneous queries to all semidynamic sets. We can think of the changes to
the semidynamic sets (given by deletions and the dynamization technique) as
driving the interval tree, which then provides fast queries. The interval tree
is easiest to explain in the dual setting. Hence we change our point of view
and discuss it in the setting of a lower envelope data structure. As part of the
interval tree we use secondary structures, i.e., fully dynamic upper hull/lower
envelope data structures. The gain of the construction is that secondary struc-
tures store only O(log4 n) lines. We require that insertions and queries of the
secondary structures already have the aimed-at performance of O(log n), only
for the deletions we get a speed up.

Theorem 5 (Speed up construction) Let D be a nondecreasing positive
function. Assume there exists a fully dynamic lower envelope data structure
supporting insert in amortized O(log n) time, delete in amortized O(D(n))
time, and vertical line query in O(log n) time, with O(n) space usage,
where n is the total number of lines inserted.

Then there exists a dynamic lower envelope data structure problem supporting
insert in amortized O(log n) time, delete in amortized O(D(log4 n)2+log n)
time, and vertical line query in O(log n) time, where n is the total number
of lines inserted. The space usage of this data structure is O(n).

We give a proof of this theorem in Section 9. We apply it twice to prove
Theorem 1. For a first bootstrapping step we use a variant of Preparata’s
data structure with D(n) = O(n), by already reusing the lexicographic order
of the points. Theorem 5 yields a data structure with deletion time D(n) =
O(log8 n). In a second bootstrapping step we get a data structure with D(n) =
O(log16(log4 n) + log n) = O(log n), and Theorem 1 follows. We address the
possiblity to use the interval-tree for other queries in Section 9.1.

2.3 Representation issues

For every input point p we create a base record that stores the coordinates
of the point (the only real numbers used in our algorithm), and pointers into
the data structures that use p, more precisely the record defines the role of p
in the data structure. This is possible because our construction places p only
in constantly many data structures. The benefit of this is, that passing points
as arguments in a function-call or as a result can be handled with constant
overhead by passing a pointer to the base record.

11

The coordinates of a completely deleted point might still be used in the con-
struction to define auxiliary lines. The space usage for this is accounted for
in the data structure that uses it. For this kind of usage there is no pointer
from the base record to the using data structure. We delete the base record of
a point only when it is no longer used in this way.

3 Finger search trees

Essential to our binary hull merges and separators are the application of finger
search trees in the form of level-linked-(2,4)-trees (20). The property of (2,4)-
trees we exploit is that they allow amortized constant extend operations, finger
searches that are logarithmic in the distance to the finger, and splits that are
logarithmic in the smaller resulting subtree. We do not use arbitrary fingers,
but only a finger to the leftmost and rightmost leaf of the tree. Suspending the
search is especially useful when we search for a point with a certain geometric
property, and we are not sure to already have such a point. We can begin
the search and suspend it as soon as we realize that the geometric situation
does not allow us to decide in which direction to advance the search. Reacting
to changes in the geometric situation we can later continue the search, not
wasting a single comparison.

A splitter consists of elements drawn from a ordered universe, stored in a
level-linked (2,4)-tree. In contrast to the usual situation, searching in this tree
should not be understood as finding the predecessor, but as identifying a leaf
with a certain property. Every search results in a split operation, we should
think of only having a combined (atomic) operation search and split. This
search is suspended whenever we have to decide how to narrow the interval of
possible outcomes (split-points).

To implement such a search the splitter has three pointers to elements, namely
the candidate, the left guard, and the right guard. The guards identify the
current interval of possible split points and the candidate is some element in
this interval The candidate defines two smaller intervals, and the next step of
the search is to decide which of them is correct. If we can take this decision,
we advance the search. This amounts to changing the left or right guard to
the candidate and determining a new candidate. If the current situation does
not yet allow to advance the search, we keep the search suspended. If later
the situation changes and we now can decide the direction (left/right) to take
from the current candidate, we continue the search (by advancing it). A search
is finished by executing a split operation. The user of the data structure has
to ensure that this split is performed between the two guards. This allows
in particular a state, where there is no further candidate because the guards
are already neighbors, but the split operation is not (yet) performed. For all

12

operations that deal with new elements, we assume that the order of the new
elements compared to the old elements is consistent with the operation.

We will use splitters to hold subsets of the points stored in the upper-hull
data structure, the ordering is given by the x-coordinates, no two points will
have the same x-coordinate. We distinguish two major states of a splitter, de-
pending on whether or not there is a suspended search. If there is a suspended
search, the only operations allowed are to continue the search or to terminate
the search by performing a split operation. Otherwise, if there is no suspended
search, we can modify the set stored in the splitter (extend, shrink, and limited
join of splitters which produces a splitter with a suspended search).

build(e1, . . . , ek) Returns a new splitter containing the elements e1, . . . , ek,
with no suspended search.

extend(S, e) Extends the splitter S that contains the elements e1, . . . , ek to
the splitter e, e1, . . . , ek or e1, . . . , ek, e. The splitter is required to not have
a suspended search.

shrink left/right(S) The splitter S is changed by deleting its leftmost
(respectively rightmost) element The splitter is required to not have a sus-
pended search.

instantiate suspended search(S) We start a new search that is sus-
pended at the first comparison step. The guard pointers of S are set to
nil, the candidate pointer is set to an element c stored at the root-node of
the (2,4)-tree. In particular it is not necessary to supply this function call
with an element of the universe to search for. We use the convention that a
nil-pointer for a guard stands for no restriction on the possible split point
in this direction. The splitter must not have a suspended search before using
this function, but it has afterward.

advance suspended search left/right(S) The left (or right) guard is
changed to point to the element the candidate pointer is currently pointing
to. A new candidate element is determined according to the finger-search
procedure (starting from the leftmost or rightmost leaf) in the (2,4)-tree.
I.e., we disallow all elements to the right (or left) of the old candidate as
possible outcomes of the suspended search (and by this as possible split-
points). If the guards become neighbors, there is no new candidate, but
the search remains suspended. The splitter is required to have a suspended
search, and there is a candidate, i.e. the guards are not neighbors.

split(S, w) The splitter S is split into two splitters S1 and S2 according to
the flag w, which is either left guard, candidate, or right guard. The split
point is not part of S1 or S2, unless the guards are neighbors. This operation
finishes a suspended search of the splitter.

join(S1, (e1, . . . , ek), S2) The splitters S1 and S2 become inaccessible and a
new splitter S is created. The splitter S holds all elements from S1, the new
elements e1, . . . , ek and the elements of S2 in this order. It has a suspended
search, where the left guard is on the rightmost element of S1 and the right

13

guard on the leftmost element of S2. The candidate is chosen according to a
(binary) search over e1, . . . , ek. It is required that none of the participating
splitters S1 and S2 has a suspended search.

We do not implement the join operation as a join of the (2,4)-trees. Instead we
perform a delayed extension of S1 and S2. Instantiating the suspended search
in the situation of the join has the promise built in that we will split at one
of the elements e1, . . . , ek before we perform another join operation with this
splitter. We merely place e1, . . . , ek in an auxiliary balanced search tree (or
an array) and use this to guide the suspended search. Not until this search
is settled with a split operation, we extend S1 and S2 with the elements
left (and respectively right) of the split point. This meets the interface of the
split operation.

Theorem 6 The operations of the splitter incur the following amortized exe-
cution times:

• The operations build and join take amortized O(k) time where k is the
number of the new elements (e1, . . . , ek).

• The operations instantiate suspended search, extend, shrink, and
split take amortized O(1) time.

• The operation advance suspended search takes a negative constant time
in the amortized sense, i.e., it can pay for analyzing a constant sized geo-
metric situation.

PROOF. We use the version of a (2,4)-tree presented in (20), with the mod-
ification that searches are suspended. We use c(n − ln n) as the potential of
a splitter of size n. Splitting such a splitter into two splitters of size respec-
tively n1 and n2 releases Ω(c · log min{n1, n2}) potential, achieving the amor-
tized O(1) split operation, including the additional (negative) potential Θ(c)
when advancing the search. 2

The splitter is an interesting data structure, even if we never suspend a search.
Then we can use it to cut a list into smaller and smaller pieces, determining
every cut-point by a search. The performance of the splitter guarantees that
the overall time used is linear in the length of the list we started with.

4 Geometric merging

In this section we describe the geometric binary merging data structure. First
we show how different subproblems come into existence and how to combine

14

them into a solution of the problem. Then we describe the details of the
solutions to the subproblems.

Let A and B be two sets of points in the plane. Assume that we want to
compute UV(A ∪ B) given that we already have UV(A) and UV(B). More
precisely we want a data structure that gives a list of the points UV(A ∪
B) in left-to-right order. This list is maintained under deletions of points
from UV(A ∪ B), under the assumption that we have two data structures
maintaining UV(A) and respectively UV(B) as two lists of points.

This situation naturally leads to the following life-cycle of a point p ∈ A: (see
Figure 6)

(1) p is inside A, i.e. not part of UV(A).
(2) p becomes part of UV(A), and p ∈ UC(B).
(3) Delete on B: p /∈ UC(B), but p ∈ UC0(A ∪B): p is hidden by a bridge.
(4) p gets on UV (C).
(5) p gets deleted.

B

B

B

B

A

A

Ap

p

p

p

bridge

A
(4)

(3)

(2)

(1)

Fig. 6. The different stages of the life-cycle of a point in the merging.

To solve our algorithmic problem, it is sufficient to keep track of the stage in
the life-cycle for every point in A and B. We have this strict life-cycle because
we only allow deletions of points on the overall upper hull. The data structure
maintains a partition of the upper hulls into stretches of points in the same
stage of the life-cycle. It turns out, that the bridge finding is an independent
problem. We will address it in Section 6.7.

The main difference for points of UV(A) is whether or not they are in-
side UC(B), i.e., we should distinguish between points in stage (2) of their
life-cycle and points in stage (3). Theses stretches to be distinguished are sep-

15

arated by the equality points, i.e., the intersection points of Bd(A) and Bd(B).
The general position assumption guarantees that Bd(A) ∩ Bd(B) consists of
isolated points.

Our algorithmic solution is to keep track of all equality points by making
them explicit in the data structure. This amounts to detect possible changes
to equality points during deletions, and to adjust the data structure accord-
ingly. The possible changes are moving equality points, and pairs of equality
points that come into existence or disappear. Given that equality points are
represented explicitly, it is easy to detect if equality points move or disappear.
The more complicated task, and hence the focus of our algorithms, is to de-
tect if a pair of new equality points comes into existence (this can be more
than one pair per deletion). Our data structure can be seen as a construction
that allows us to efficiently detect such a formation of equality points, without
being too inefficient in the cases of moving and disappearing equality points.

For an extractore we define the set B to be the points on the upper hull, and
the set A the other points, stored further down in the merging tree. There
we do not have equality points (and no recursive data structure for B), the
extractor itself has to identify the points to move from A to B. In this situation
the life-cycle of a point is reduced to the stages (2) and (4).

To achieve a correct geometric construction, it is often helpful to keep a ge-
ometric proof of correctness. In our case we make explicit several auxiliary
points that basically constitute a geometric proof that there can not be equal-
ity points that our construction did not identify. This (the auxiliary points and
lines) is what we call a certificate. One such certificate addresses the range be-
tween two equality point, which we call a streak. Such a streak has a polarity

B

B

B

A
A

A

A

B

B

A

bridge

equality point

streak B over A

Fig. 7. The task of merging two hulls boils down to identifying equality points and
bridges.

(as illustrated in Figure 7), either Bd(A) is above Bd(B) inside the streak,

16

or vice versa. This leads to the notion of the locally inside and locally outside
upper hull. The certificate we maintain is based on a sampling of points on
the locally inner hull, Bd(A), the so called selected points. We introduce one
more stage in the life-cycle of a point between (2) and (3):

(2′) A point on p ∈ UV(A) can get (and stay) selected as long as it is in-
side Bd(B), i.e., once a point p ∈ UV(A) gets selected it stays selected
until Bd(B) has changed “below” p.

4.1 Geometric concepts at a point: Rays, certificates

For every point p ∈ UV(A) we define the concept of a valid pair of rays in the
following way: Let S and T be two tangent lines on Bd(A) through p, where
the slope of S is smaller than the slope of T . Let h be a line through p that
has a slope between the slopes of S and T , and let H be the closed half-plane
above h. Then the two rays s = S ∩H and t = T ∩H form a valid pair of rays
rooted at p. We say that s is left-directed (all of it is to the left of p) and t is
right-directed ray (all of it is to the right of p). The noteworthy property of
such a valid pair (s, t) of rays is, that any line that intersects both s and t, does
not intersect UC0(A). If S and T contain the two segments of Bd(A) that are
adjacent to p we call this the canonical pair of rays rooted at p. (This achieves
the smallest allowed angle between s and t.) See Figure 8 for an illustration.

p
o

s t

q

r

Fig. 8. Valid rays rooted at the point p: The canonical pair of rays is (s, t). The pair
(o, q) is a valid pair of rays, and so is (s, r), (o, t), and (s, q). The pair (o, r) is not
valid, a line that intersects o and r is below p.

4.1.1 Strong certificates

Our data structure maintains a set QA ⊆ UV(A)∩UC0(B) of selected points.
Symmetrically there is QB ⊆ UV(B)∩UC0(A). We will introduce some condi-
tions and invariants we maintain for these sets. For each selected point p ∈ QA

we decide upon a particular valid pair of rays (sp, tp), its strong rays, collected
in the set RA. When p gets selected we take the canonical pair of rays to

17

be (sp, tp). We do not change (sp, tp), even if they no longer are the canonical
pair of rays rooted at p. This happens if a neighbor of p on Bd(A) gets deleted.

For all p ∈ QA the data structure maintains the intersections of sp and tp
with Bd(B) explicitly. We call these two intersection points u and v strong
ray intersections. By the geometry of valid rays, we are sure that there is no
equality point of Bd(A) and Bd(B) (in the vertical slab) between u and v.
See Figure 9 for an illustration. We call p, u, v a strong (separation) certificate
that extents (horizontally) from u to v. Besides the equality points, this kind
of intersections are the only points of the locally outer hull Bd(B) that are
explicitly set in relation with the locally inner hull Bd(A).

p

a

b

c

d

e

f h

i

j

B

B

s
t

u
v

extent of the certificate
sh

ad
ow

Fig. 9. The shadow around the selected point p, given by the strong rays s and t (t
is not canonical). The points b–i are in the shadow of p, the points a and j are not.

The most important invariant about the set QA of selected points is, that
we require that two strong separation certificates do not overlap, i.e., that
they are horizontally disjoint. We say that the two strong certificates enjoy
the disjointness condition. For a selected point p ∈ UV(A) this requirement
disallows the selection of several other points of UV(A), a range in the left-to-
right ordering of UV(A) around p, the shadow of p, as illustrated in Figure 9.
This policy makes sure that we do not select too many points, but it also
introduces a gap between any two consecutive strong separation certificates.

As we will only consider dynamic aspects of the construction later, here a
parenthesis on the dynamic of certificates and shadows. Deletions on UV(B)
move the strong ray intersections u and v closer to p, the horizontal extent of
the separation certificate shrinks, so does the shadow of p.

18

4.1.2 Light separation certificates

Consider the gap between two neighboring two strong separation certificates,
manifested by the two selected points p, q ∈ QA, wher p is to the left of q,
such that no point in the slab between p and q is selected (is in QA). Let f be
the right-directed strong ray rooted at p with strong ray intersection v, and e
be the left directed strong ray rooted at q with strong ray intersection u. The
situation is illustrated in Figure 10. The disjointness condition states that v
is left of u.

������ ��������
������ ������

candidates
q

B

i j

strong rays

p

fe

extent light

extend strong certificate extend strong certificate

certificate

g h

A

c

uv

Fig. 10. A light certificate. Hull A is below hull B (depicted as a curve, it is here not
important that it is a polygon). The points p and q are selected, their strong rays
are depicted as a solid line. The gap between the strong certificates is between u
and v. The point c is a candidate, its weak rays (g, h) are depicted as dashed lines.
The light certificate extents from i to j, thus covering the gap.

To close the gap in separation certificate that is between u and v, we use a
another type of certificate that is based on canonical rays. For a point c ∈
UV(A) we consider the pair of canonical rays g and h, here used as weak
rays. For g and h we do not determine the intersection with Bd(B), but we
only check if v is above g (as a line) and u is above h. If this is the case, we
conclude that the intersections with Bd(B) are further away from c than v
and u respectively, and that there cannot be an equality point between u and v.
The valid light certificate (c, g, h) closes the gap between the two neighboring
strong certificates of p and q.

Usually there will be more than one point c ∈ UV(A), that has a light certifi-
cate that closes the gap, we are free to choose any such point. More precisely,
any point that is simultaneously in the shadow of p and of q defines a valid
light certificate. Another (somehow degenerate) possibility is, that the two

19

shadows touch precisely, i.e., that there is no point between the shadows, but
also no point in the intersection of the shadows. For this situation we use a
special version of a light certificate. Let a be the rightmost point of the left
shadow, and b the leftmost point of the right shadow. By assumption is ab a
segment of Bd(A). Instead of a pair of canonical rays we use the line defined
by ab. Because a and b are in their respective shadows, this line intersects the
next strong rays inside of Bd(B). Under the non-degeneracy assumption, this
forms also a valid light certificate.

The third possibility is, that the shadows do not overlap. Then there cannot be
a light certificate. Instead there is a point that is allowed to be selected because
its strong certificate (using canonical rays) will not overlap the existing strong
certificates. We call such a point a selectable point.

As we will come to the data structure aspects only later, here a small parenthe-
sis on the connection to the splitter. We store the not-selected points of UV(A)
between the selected points p and q in a splitter. If the candidate of the sus-
pended search defines a valid light certificate, we leave the search suspended.
If the deletion of a point in B shrinks the shadows further and the light certifi-
cate is no longer valid, we do not start the search over, but merely advance it.
Instead of leading to a new valid light certificate, the search might lead us to a
selectable point that is allowed to be selected (outside of the shadows). In this
case we end the suspended search with a split operation and select the point.
This use of the splitter is of course the motivation for the otherwise somewhat
unusual interface of the splitter, the way to search for a next point to select
needs only overall constant time per point in A. In this way every splitter has
two strong rays and strong ray intersections that guide its suspended search,
in Figure 10 the strong rays e and f .

4.1.3 Boundary certificates

A strong certificate usually does not extend to an equality point. To achieve
a complete certificate, we introduce the so called boundary certificate. Let e
be an equality point and p ∈ UV(A) a selected point, such that there is
no selected point between e and p. Then we take a weak ray h rooted at e
towards p. Being a tangent on Bd(A) the line of h is given by the segment
containing e. If h intersects the strong ray rooted at p inside Bd(B), there
cannot be another equality point between e and p. Additionally we know
that the shadow of p reaches over e, and we cannot select any of the points
on UV(A) between p and e. Otherwise, if there is no valid boundary certificate,
the point i is selectable, if it gets selected there is a trivially valid boundary
certificate between e and i.

We also have to address the case if p is the rightmost (or symmetrically left-

20

B
x

A

ei

h

B

A p

t
d

Fig. 11. A boundary certificate: p is the rightmost selected point in the streak, e is
the equality point, t the relevant strong ray, and i is the point defining the direction
of the weak ray. The intersection d of t and the weak ray h shows that the boundary
certificate is valid.

most) selected point of UV(A). If the rightmost point rA of A is further to the
right than the rightmost point rB of B, we have an ordinary boundary certifi-
cate (only that one of the segments is the special rightmost vertical segment
of B). Otherwise (rB right of rA) we have a boundary certificate that shows
that there can not be another equality point between p and rA. We take the
vertical upward ray h rooted at rA as a light ray. If h intersects the strong
ray t at p inside Bd(B), this certificate is valid. This is actually not really a
special case since h can be seen as the left-directed canonical ray at rA (also
if rA is selected). The situation can be understood as an ordinary boundary
certificate if we define that the vertical segment of Bd(A) at rA intersects the
vertical segment of Bd(B) at rB at an downward infinity point. We further
define that such a vertical boundary certificate extends all the way to right-
infinity. In the case rA right of rB (first case), this definition leads to a trivial
streak (locally lower hull consists of one segment only) that extends to right-
infinity. This way a complete certificate always horizontally covers everything
from left-infinity to right-infinity.

4.2 Shortcuts

We simplify the locally outer hull by applying shortcuts. This reduces work
and unifies the description of the algorithm in the context of finding strong
ray intersections.

We consider a non-vertical line l and the half-plane H below l and replace in
our considerations UC(B) with UC(B) ∩ H. This situation is exemplified in
Figure 12. For a line l we determine the line-segment l∩UC(B), the shortcut.
The shortcut replaces the part of Bd(B) that is above l. The two cutting points

21

B

B

shortcut

Bx

y

l

l

Fig. 12. A shortcut defined by the line l with cutting points x and y. The resulting
shortcut version B′ of B is indicated as an additional doted polygon.

of l ∩ Bd(B) replace all the points of B above l.

We use shortcuts to simplify the locally outer hull between points that are
explicitely set in relation with the locally inner hull. They allow us to reduce
the number of segments on the locally outer hull between points that are
connected to the inner hull, i.e. strong ray intersections and equality points.
Let u and v two neigboring such points. Then there always is a (strong, light or
boundary) certificate, that ensures that the line connecting u and v is outside
the locally inner hull. As discussed algorithmically later, we use a shortcut
“close” to uv, close enough that the shortcut version of the locally outer hull
has only a constant number of segments between u and v.

We will have many shortcuts, for which we make sure that they do not overlap,
i.e., they are all (horizontally) disjoint, the intersection point of two shortcut
defining lines is outside of UC0(B).

For a set H of non-vertical lines that intersect UC0(B) we define the shortcut
version of B to be the set of points (usually called B′)

SCH(B) =
(
UV(B) ∩

⋂
l∈H

hl

)
∪
⋃
l∈H

(l ∩ Bd(B)) ,

where hl denotes the half-space below the line l. We will only use sets H of
shortcuts that do not introduce new equality points with Bd(A), i.e. Bd(A)∩
Bd(B) = Bd(A) ∩ Bd(SCH(B)), i.e., all the introduced segments (shortcuts)
are above Bd(A). We also use only lines that are defined by two input points
(possibly already deleted).

4.3 The complete certificate

Summarizing the just explained concepts, we show how a complete certificate
looks like, and how it is represented in the data structure. This certificate

22

provides a proof that all the equality points are made explicit. All the sets
referred to in the next requirement are made explicit in the data structure
as explained in Section 4.6. Note that all the conditions in this certificate are
local, they can be verified by only considering a constant number of input and
auxiliary points and lines.

All together this has the flavor of an induction hypothesis or a loop-invariant.
The requirement describes the state of the data structure before we process
the deletion of a point, and the state we hence should reach by reacting to the
the deletion.

Definition 2 (Complete Certificate)
The tuple C = (A, B, E, QA, QB, RA, RB, DA, DB, LA, LB, HA, HB, CA, CB),
where A and B are two finite sets of points in the plane, and we have the set
of identified equality points E, sets of selected points QA ⊆ UV(A) and QB ⊆
UV(B), sets of strong rays RA and RB, the sets DA and DB of strong ray in-
tersections, the sets of candidates (light certificates) LA ⊆ UV(A) and LB ⊆
UV(B), the sets of shortcuts HA and HB, and the sets of cutting points
CA and CB. C forms a complete certificate if the following conditions are
met:

(1) E ⊆ Bd(A) ∩ Bd(B), and two neighboring equality points in E define
the same polarity for the streak between them.

(2) The cutting points stem from the shortcuts, CB = Bd(B) ∩ ⋃l∈HB
l.

(3) All shortcuts l ∈ HB are effective, l ∩ UC0(B) 6= ∅ (|l ∩ CB| = 2).
(4) All shortcuts l ∈ HB are conservative, i.e., l does not introduce an equal-

ity point with Bd(A), l ∩ UC0(B) ∩ UC(A) = ∅.
(5) Shortcuts l ∈ HB and f ∈ HB are disjoint, l∩ f ∩UC0(B) = ∅ (order on

the cutting points).
(6) RA forms valid pairs of rays on Bd(A) and these pairs of rays are rooted at

the points of QA, and form the strong ray intersections DA with Bd(SCHB
(B)).

(7) QA ⊂ UC0(B) and QB ⊂ UC0(A), as proved by the strong ray intersec-
tions DA.

(8) Let s be a consecutive sequence of segments from Bd(SCHB
(B)), such

that s does not intersect any strong ray of RA or Bd(B). Then s consists
of at most 3 segments.

(9) strong certificates (implied by RA and DA) do not overlap horizontally.

For any streak of polarity A below B between the identified
equality points u, v ∈ E we have:

(10) If there is a point of UV(A) between u and v, then some point of UV(A)
between u and v is selected.

(11) Between two strong certificates (selected points) there is a point c ∈ LA

that forms valid light certificate.
(12) Between u (v) and the leftmost (rightmost) selected point p ∈ UV(A) is

23

a valid boundary certificate.

All the above conditions are also valid with A and B interchanged.

By the nature of a separation certificate and the fact that all certificates
together (strong, light and boundary) cover everything from left to right except
the equality points in E, we are sure to have identified all equality points.

A streak of the certificate, that has as the locally inner hull only one segment,
is called trivial streak.

4.4 Limited impact

Because we will consider deletions of a point r ∈ UV(B), r 6∈ UC0(A) it is
useful to collect some properties of a complete certificate around such a point.

Lemma 7
Let C = (A, B, E, QA, QB, RA, RB, DA, DB, LA, LB, HA, HB, CA, CB) be a com-
plete certificate, and let xr and ry be two consecutive segments of Bd(B).

Then xr and ry intersect at most 6 strong rays of RA, and these strong rays
are rooted at no more than 4 selected points of QA.
Let H ⊆ HB be shortcuts intersecting xr and ry, then |H| ≤ 3 and at most
7 selected points and 12 strong rays intersect segments of H ∪ {xr, ry}

PROOF. A worst case situation for two segments is depicted in Figure 13.
Because of the strong ray separation, it is impossible that 4 consecutive strong
rays of A intersect a segment of Bd(B). With the names given in Figure 13
we have that the slope of strong ray 0 must be larger than (or equal) that of
strong ray 3. Because ray 3 is right-directed and intersects xr, it is impossible
that the left-directed ray 0 also intersects xr. The bound on the number of
selected points stems from the strong ray intersections following the order of
the strong rays. Each of xr and ry intersects at most two different shortcuts,
one of these possibly 4 shortcuts is shared, |H| ≤ 3. In the worst case we look
at two pairs of segments (real segment and shortcut) as just argued for. (The
third possible shortcut between xr and ry cannot contribute.) 2

Note that two consecutive segments xr and ry of Bd(B) can have at most
4 intersections with Bd(A) (equality points).

24

x

y

p1

p2 p3

p4
0 7

2

3 r 4

5

1 6

Fig. 13. A worst-case of 6 strong rays intersecting xr and ry, rooted at 4 selected
points.

4.5 The generic algorithm

Assume we are in the situation that we identified a pair of equality points,
and know that there are no further equality points in this streak. This is for
example the case when we initialize an extractor or a merging data structure.
Even if this sounds like a somewhat boring situation (after all we already know
all the equality points), this is the generic algorithm when (re-)establishing a
separation certificate. The other algorithms are really only extensions (with
small modifications) of this algorithm.

We start by describing the algorithm in high-level pseudo-code. Then we ex-
plain the underlying data structures and give some more details and explana-
tions, especially on a typical run.

In general (if the new streak has space for more than one strong certificate)
the algorithm will start by selecting the leftmost point p and the rightmost
point q of UV(A) in the new streak. Then the point of UV(A) between p and q
are stored in a lasting splitter M , the points of UV(B) between tp and sq are
stored in one temporary splitter TM . This is when “the loop” really starts,
the search facility of M either leads to a next point r to select, creating two
copies of the situation, one between p and r, and another between r and q.
Alternatively it might be that the search stays suspended because we found a
valid light certificate between the strong certificates of p and q.

To advance the search on M , we determine for a candidate point c ∈ UV(A)
whether or not it is in the shadow of p, and also whether or not it is in the
shadow of q. If it is in both shadows, the light certificate of c is valid. If in
contrast it is in neither of the shadows, the point c is selectable.

25

Generic algorithm “Establish certificate between two equality points”

Assume: Bd(A) below Bd(B) between equality points e and f
Assume: there is a lasting splitter L for UV(A) between e and f
Assume: there is a temporary splitter T for UV(B) between e and f
while(there is a lasting splitter M not defining a valid light/boundary certificate)

advance suspended search trying to adjust light certificate
if(selectable point p ∈ UV(A) found)

then select p
split M into Ml and Mr at p
determine strong rays tp and sp as canonical rays
search for sp ∩ Bd(B) splitting TM into TMl

and T
search for tp ∩ Bd(B) splitting T into X and TMr

add to HB the shortcut above tp and sp (points in X)
if(candidate of suspended search on M defines valid light certificate)

add to HB the shortcut above M

If it is in the shadow of p, but not in the shadow of q, we advance the search
to the right. The point c becomes the new left guard of the (suspended)
search of M . Such a left guard of the (suspended) search is also geometrically
interesting, it is a point not in the shadow of q (also not in the future since
the shadow of q does not extend) where we are allowed to split the splitter if
we want to finish the search.

4.5.1 Introducing shortcuts

When we create a shortcut, we usually have two strong-ray intersections
u and v on two segments a and b of the shortcut version Bd(B′) of B. (Oth-
erwise u or v or both can be an equality point.) In general it is possible that
the strong ray intersections are on shortcuts. The situation is illustrated in
Figure 14. If a and b are adjacent or there are only three segments between
them, there is no need for a shortcut. We define x to be the right endpoint of a
if a is an segment of Bd(B), or otherwise the leftmost point of UV(B) that
is to the right of the shortcut a. We define y symmetrically as the rightmost
point of UV(B) to the left of b. We take the line l defined by x and y as the
new shortcut.

This new shortcut might overlap with existing ones, but none of these can in-
tersect a strong ray (they are completely between a and b). To achieve shortcut
separation, we hence delete all these interfering shortcuts. More precisely we
scan Bd(B′) above l, marking segments of UV(B) as hidden by the shortcut,
and deleting existing shortcuts (but still using them to scan fast, segments
that were behind a shortcut need not be visited). Then we instantiate the
new shortcut. This achieves the aggressive shortcut policy. It also complies

26

a

k

h

x

y

b

g

l

Fig. 14. The situation of creating a new shortcut. The naive and most aggressive
choice g is forbidden by shortcut separation. The line l provides a shortcut that
results in monotonic strong ray intersections and is defined directly by two input
points. We delete the shortcuts h and k.

with the principle, that strong ray intersections only get closer to the selected
point, because none of the deleted shortcuts defines a strong ray intersection.

4.6 Representation issues

Our data structure introduces several types of auxiliary points:

• Equality points on both hulls,
• strong ray intersections, and
• cutting points on the locally outer hull.

The equality points and the strong certificates connect the two hulls. This
connection is made explicit by pointers. On the locally outer hull, shortcuts
achieve that strong ray intersections (from each other) and equality points are
only a constant number of segments apart. On the locally inner hull, the points
between two selected points are stored in lasting splitters (with a suspended
search to define a valid light certificate). Between an equality point and a
selected point the points are stored in a lasting splitter, that has no active
suspended search.

To allow the necessary navigation, all (auxiliary) points have a record, identi-
fying the coordinates of the point by pointers to the base-record of the input
points necessary to define them. We should not delete base-records that are
referenced to in this way. Alternatively we could store the coordinates, but we
prefer not to copy real numbers.

27

At every (auxiliary) point we have pointers to the following objects:

• To the strong ray intersections if the point is selected
• To the selected point from the strong ray intersections
• Between selected points and adjacent splitter
• To the next point to the left / right (auxiliary or not)
• From one cutting point to the other cutting point and to the shortcut record

(and back)
• Between equality point and adjacent splitter, both directions

We also have a flag that indicates if the point is cut away by a shortcut.

Our construction with extractors achieves that every point is stored and used
only in constantly many data structures. Hence we can store the mentioned
pointers directly in the base record of the point. This allows us to simply pass
a pointer to the base record if we want to pass a point between merging data
structures and extractors.

4.7 data structure in the re-establishing: temporary splitter

One of the main ingredients to the data structure and the generic algorithm
is to connect the locally outer and locally inner hull, not only at the already
identified equality points, but also at the strong certificates. In the data struc-
ture we reduce the locally outer hull to less than 4 segments by introducing
shortcuts. In the generic algorithm we store the points on the locally outer hull
in a piece of the temporary splitter. We will stick to this principle of having
a lasting splitter on one side matched with either only a constant number of
points, or a temporary splitter.

4.8 Preselected points

The process of a selecting a point is a two-stage process: First we find a se-
lectable point, usually without knowing the precise extent of its strong certifi-
cate precisely we have evidence that it will not overlap already existing strong
certificates. We call such a point preselected, data structure wise we have to
select this point to pay for the search that lead us to it. Then we instantiate
the strong rays and strong ray intersections, making the new strong certificate
explicit.

In some of the algorithms of Sections 5 and 6 to re-establish a complete certifi-
cate, we will identify preselected points, and defer the instantiation of strong
rays to a later stage, for example because we do not yet have a good repre-

28

sentation of the other upper hull, a temporary splitter that would allow us to
determine the strong ray intersections.

When we (later) select such a preselected point p ∈ A, we are in the situation
that the shortcut version of the other hull is represented in a temporary splitter
(or is only a constant sized part). We use the temporary splitter to find the
segment of Bd(B′) that is intersecting the vertical line through p. From there
we can perform a scan to find the intersections with the canonical rays at p,
now used as strong rays. We instantiate a shortcut above the new strong rays.

We will also see the situation that a preselected point turns out to be already
in stage (3) of its life-cycle. Then we will make sure that the point gets its
proper role in the new streak of opposite polarity.

4.9 Deselecting points

Assume we have a point p ∈ UV(A) that is selected, but after a deletion
on UV(B) we have p 6∈ UC0(B). In this situation p does no longer give rise
to a strong certificate, and we have to reflect this fact in the data structure.
One effect is that p should not be the boundary of a lasting splitter, and we
should shrink the lasting splitter and remove points that surface just like p.
The splitter is only allowed to shrink if it has no suspended search (in geometry
the concept of a light certificate is also void, there is no gap between strong
certificates).

Let us focus on the lasting splitter M to the left of p. We pre-select the right
guard g of M . (If g is nil, we can just finish the suspended search, there
have only been O(1) advances of the search) This is an allowed splitting point
of M , so it is fine for the data structure and accounting. Additionally we
know a-priori (without even determining strong rays or anything), that the
strong certificate of g (if it exists at all) does not overlap with any other strong
certificate, as we will argue now, we are allowed to pre-select it. Let q be the
selected point to the left of M (M is between q and p). By being the right
guard, g is not in the shadow of q, and hence a strong certificate at g will
not overlap the strong certificate at q. Additionally no strong certificate of A
below B can extend over p, as we have there A over B (or at least equality).
Hence the certificate of g cannot overlap with another strong certificate to the
right. If instead g is already in stage (3) in its life-cycle, no harm is done by
pre-selecting it.

29

4.10 Accounting for the generic algorithm

The search for valid light certificates or selectable points is paid for by the
splitter. The selection of one point takes constant time, which is accounted
for by the life-cycle of the point (it can be selected only once). We introduce
shortcuts only after selecting a point, the scanning over the segments is again
paid by the life-cycle.

5 Linear space: Extractors

As already explained in Section 2.1, we initialize an extractor as the last
step of merging two semidynamic sets. We copy the list of upper vertices
into a representation of B, and then delete the vertices in B (recursively)
from A. Finally we use the generic algorithm (from Section 4.5) to create
a complete certificate. A separator has by construction only one streak of
polarity B over A, and no actual equality points (we only have the two equality
points at infinity). A complete certificate consists only of selected points and
strong rays on A, and shortcuts only on B, the sets E, QB, RB and HA are
empty.

5.1 Re-establishing an extractor

In the following we discuss the situation where the set of points C, of which
the extractor makes the upper vertices explicit, changes from C1 to C2 by the
deletion of the point r ∈ UV(C1). The purpose of the extractor is to maintain
the partition of C into B = UV(C) and A = C \ B. The data structure
represents B1 = UV(C1) and A1 = C1 \ B1 and a complete certificate as
described in Section 4.3 (Definition 2) between them. The algorithmic task is to
react to the deletion of r ∈ B1 by determining B2 = UV(C2) and A2 = A1\B2,
and to construct (repair) the complete certificate between A2 and B2.

We observe some geometric properties and give the following names: The
change from B1 to B2—as lists representing UV(C1) and UV(C2)—is that r
gets replaced with a (possibly empty) list L ⊆ UV(A1) of points. Let x be
the left neighbor of r on UV(B1), y its right neighbor. We define B̂1 = B1 \
{r}. The difference between Bd(B1) and Bd(B̂1) is, that the triangle xry is
replaced by the segment xy. Let u be the point of Bd(A1) that has a tangent
(on A1) through x and is right of x, symmetrically let v ∈ Bd(A1) be left of y
and have a tangent through y. Then the list L consists of points of UV(A1)
between u and v, as for example in Figure 17. Alternatively, L is empty if xy

30

is above Bd(A1). We say that the points of L are surfacing. On UV(A2) the
list L is replaced by a consecutive list of points J , defined by deleting the
points of L from A1.

It is possible that r is the righmost (or symmetrically the leftmost) point
of B. If x is the rightmost point of C2 we set L = ∅ and only need to adjust
the boundary certificate (generic algorithm). Otherwise the rightmost point
of A1 surfaces, we determine L by a right-to-left scan of UV(A2), and use the
generic algorithm to complete the certificate (after shrinking a lasting splitter
and possibly deselecting some points of QA).

We can check whether a point p ∈ UV(A1) is surfacing by examining only its
neighbors u and v on UV(A1) and x and y: If and only if p is to the right of x
and the left of y and p ∈ UV({p, x, y, u, v}), we have p ∈ L.

5.2 The algorithm

Our approach is to use the existing complete certificate between A1 and B1

to identify L. Once we know L, the sets B2 and A2 are defined, and we can
access UV(A2) using the recursive data structure. We build a complete cer-
tificate between A2 and B2. This process is referred to as re-establishing the
complete certificate, because we can re-use large portions of it.

Let R ⊆ RA be the strong rays that can have different intersections with
Bd(B′

1) and Bd(B′
2), and Q ⊆ QA be the selected points that have a strong

ray in R. We discuss how to determine R in Section 5.2.3. We have |R| ≤ 7
by Lemma 7. During (most of) the algorithm a point p ∈ R is pre-selected,
we do not know the precise extent of the strong certificates of p, but we are
sure that it does not overlap with any other strong certificate.

Our algorithmic approach can be summarized as follows: We assume that L =
∅ and try to complete the separation certificate. If this succeeds, our assump-
tion was true and we are done. Otherwise the failing process gives us a good
starting point to identify L and establish the new complete certificate. Even
though the geometric decisions to advance suspended searches and to select
points where based on the wrong assumption L = ∅, they remain valid. We
return to this discussion in Section 5.2.2.

We realize that there is a surfacing point by finding a point q ∈ UV(A1)
above xy. Note that q itself might not be surfacing, but the point s of UV(A1)
with a tangent line parallel to xy does surface. We can use a lasting splitter
to actually find s, and from there determine all of L with a linear scan away
from s. If we happen to find s, we merely check on which side of xy it is. Then
we can either conclude that s ∈ L, or that L = ∅. Our algorithm proceeds

31

without necessarily identifying s. Nevertheless we work with s in the sense
that we can decide for a point c ∈ UV(A1) on which side of s it is, just by
comparing the slopes of the segments at c with the slope of xy. Here we use the
suspended search facility of a lasting splitter in geometrically different ways:
As long as we assume L = ∅, we consider a light certificate, comparing strong
ray intersections with light rays. As soon as we know L 6= ∅, we switch to
searching for s by comparing slopes.

Let HB be the current set of shortcut defining lines.

Fig. 15. Algorithm “Detect surfacing”:
Assume: r ∈ B1 gets deleted, neighbors are x and y, there is complete certificate

compute B̂′
1 = SCH(B̂1) (apply shortcuts) (Section 5.2.3)

determine R ⊆ RA, the strong rays that might change
determine Q ⊆ QA, the selected points to R, the preselected points
classify points in Q as right of s and left of s
if (point of Q surfaces) then goto search surfacing point
identify the middle lasting splitter M (the one containing s)
identify p, q ∈ Q, the selected points next to M , p left of and q right of M

determine intersection of right strong ray at p with B̂′
1 (with xy)

determine intersection of left strong ray at q with B̂′
1 (with xy)

while(the light certificate of the candidate of M is not valid)
advance suspended search of M (consider light certificate of the candidate)
if(candidate point above xy found)

then goto search surfacing point
if(search on M finishes with apparently selectable point c)

then split M and preselect c
check if c is left or right of s
make M the new middle suspended search around s
instantiate suspended search on M

determine the necessary strong ray intersection of c with B̂′
1

determine strong ray intersections for preselected points with B̂′
1

place appropriate pieces of B̂′
1 in (constant size) temporary splitters

L := ∅ (no surfacing)
goto “generic algorithm”

5.2.1 Performance considerations

To achieve the aimed-at amortized performance of the data structure we
should only use time O(|L|+ |J |) for all of the re-establishing: Every point can
be once in J and once in L, it advances in its life-cycle. In particular we should
only use O(1) time if no point is surfacing, i.e. L = J = ∅. This is (one of) the
situation(s) where we crucially use the search facility of the splitter, where the

32

Fig. 16. Algorithm: “Search surfacing point”, Process if some point o is
above xy

if(no preselected point is surfacing)
then Use suspended search on M to find s by slope comparison

while (a neighbor of L on UV(A1) surfaces too)
extend L

finish suspended searches neighboring surfacing selected points (see Section 4.9)
build temporary splitter of points on UV(B′

2), including L, up to unchanged strong ray intersection
compute J
create lasting splitter of points on UV(A2), join over suspended search over J
goto “generic algorithm”

overall time spent in searches is amortized constant per element (remember
that the search, including the work around the advancing, is already paid for
when placing a point in the splitter). If there is a point surfacing (usually s)
we scan Bd(B1) in both directions away from s to determine the extent of L.
We use the data structure holding A to determine J by deleting all the points
of L. We use O(|L| + |J |) potential when we create new splitters and extend
existing ones (via the restricted join operation, while we establish the new
complete certificate between Bd(A2) and Bd(B2)).

5.2.2 Geometric justification of the two stages of the algorithm

We have to argue, that none of our decisions to make a point a guard (or
to (pre-)select a point, which is geometrically the same, see Section 4.1.2)
becomes invalid, if it turns out that the assumption L = ∅ was wrong. It
is important for this argument, that the candidate we are talking about is
below xy. This is always the case because we would otherwise not have made
it a guard or selected it, but started the algorithm in Figure 15 searching for s.

The names in the following Lemma are illustrated in Figures 17 and 18.

Lemma 8 Let c ∈ UV (A1) and c below xy. Let h be the left directed canonical
ray rooted at c. Let p be a selected point and f the right directed strong ray
rooted at p. Let i be the intersection of xy and f (the wrongly assumed strong
ray intersection). Let j be the intersection of f with Bd(B2) (the real strong
ray intersection).

Then j is above h (as a line) if and only if i is above h. This is also the case
for the symmetric (left and right interchanged) assumption.

PROOF. There are two cases. If s ∈ L, the point of UV(A1) with a tangent
line parallel to xy, is between c and p, (illustrated in Figure 17) then the inter-

33

L
p

x

y

B1

A1

s

c

h

r f

j

i

Fig. 17. Situation of the proof of Lemma 8 that all selected points obey separation,
even when selecting in an extractor, different sides.

L

x

y

p

B1

A1

r

h

f

i
j

s

c

Fig. 18. Situation of the proof of Lemma 8 that all selected points obey separation,
even when selecting in an extractor, same side.

section of f and h is outside UC(C2), whereas both i and j are inside UC0(C2).
(Monotonicity of rays and the tangent rays at s.)

If p and c are on the same side (left) of s, we have the situation of Figure 18.
Because of the slope of h and because c is below xy, the intersection of h
with f is closer to p than i and hence also closer to p than j. 2

34

5.2.3 Applying shortcuts and finding temporary strong ray intersections

It is possible that the triangle xry is completely above (cut away by) a short-
cut l ∈ H. Then we conclude immediately that there is no surfacing point,
and that the complete certificate remains valid. The flag of the data structure
that marks cut-away segments allows us to check this case in constant time.

We construct the shortcut version B̂′
1 = SCH(B̂1), i.e., we apply the possibly

relevant shortcuts to the segment xy. Let X ⊆ H be the set of lines that have
cutting-points on xr or ry. By Lemma 7 we have |X| ≤ 3. Only shortcuts
defined by X can change and intersect xy. Our data structure provides direct
access to X. In particular we detect the case X = ∅. In this case we continue
without having to use any shortcuts.

We determine the intersections of the lines in X with the segment xy. These
points are taken as temporary cutting-points and we reestablish the data struc-
ture to represent the resulting B̂′

1. These cutting-points might have to be
changed later, if we find a surfacing point. If we find that a shortcut defined
by line l ∈ X has no intersection point, we can conclude that it is no longer
effective and delete it from H. (An effective shortcut needs a point above it,
which here cannot come from A because of xy, and not from B because all
shortcuts are conservative, they fit to Definition 2.

Scanning away from the representation of the segment of Bd(B̂′
1) that lies

on xy, we search for the next strong ray intersection to the left and to the
right. We call the set of examined segments E ⊂ Bd(B̂′

1). By the discussion
in Section 4.4 we know |E| ≤ 5.

We compare slopes to identify the selected points of UV(A1) that are right
of s, and the ones left of s. We call the lasting splitter that contains s the
middle splitter M . (If s itself should be selected things only get easier.) Only
for M we determine the strong ray intersections with the segments of E. If
such an intersection is defined by xy, it is possible that this intersection might
change because of a surfacing point, and is hence not final.

Alternatively it can be the case that we realize that one of the selected points
is above xy. This implies that there is a surfacing point and we immediately
jump into the algorithm “search for a surfacing point.”

If both the strong ray-intersections are final, we conclude that there is no point
surfacing and that the complete certificate stays valid (none of the strong-ray
intersections has changed).

35

5.2.4 Searching for surfacing points

Once we know that there is a surfacing point (L 6= ∅), we can just search for
one of them. In particular we can search for the point s. In general M will
have a suspended search. We test the left and right guard of this suspended
search for being left or right of s. If they are on different sides of s we continue
the search until we find s. If they are on the same side of s, say s is left of
both guards, then we pre-select the left guard g. This meets the strong ray
separation to the right because g is a left guard, and to the left because the
surfacing point s is between g and the next selected (to the left of g) point p
of UV(A1), the left neighbor of M . We split M at g and use the resulting
splitter between p and g to search for s.

5.2.5 Processing surfacing points

As soon as the point s (or any other surfacing point) is identified, we can
extend the list L of surfacing points. Let u be the rightmost point of L, and v
its right neigbor on UV(A1). If v is above uy, we include v into L. In terms of
accounting this is no problem, we realize that the points advanced in their life-
cycle, we will never process one point a second time in this way. Additionally
we identified L to return to the parent data structure and we know that B2 =
B̂1 ∪ L. We also get the shortcut version B′

2 = SCH(B2) easily, because we
know that none of the points of L can be above a shortcut of HB. Hence
only the up to two temporary cutting points with xy need adjustment, they
are instead taken with the segment of Bd(B2) connecting x with the leftmost
point of L, and the a segment connecting the rightmost point of L with y.

To remove the points of L from the representation of the locally inner hull,
we remove them from lasting splitters by shrinking. We first have to finish
the suspended searches and deselect selected points from L, as described in
Section 4.9.

We use the data structures responsible for A to delete all the points of L
from A1 in order to achieve A2. As a result of this operations we get list J of
points that replace L, i.e., a stretch of points on UV(A2) that are new.

We take one temporary splitter to store all the points L′ ⊃ L and constantly
many more points of B̂′

1, such that L′ is smallest possible, but begins and
ends with strong ray intersections, getting us back to a situation where we can
run the generic algorithm. We have the situation of a stretch of preselected
points, between them two splitter S1 and S2 without a suspended search on A2,
between S1 and S2 the list J of new points on UV(A2). We use the operation
join(S1, J, S2), resulting in the splitter S that has a suspended search with the
left guard gl (the rightmost point of S1, i.e. the left neighbor of L on UV(A1),
also the left neighbor of J in UV(A2)) and the right guard gr. We argue that gr

36

is in fact not in the shadow of the left selected point p, and the symmetric
condition. For this we consider the left directed canonical ray t at gr and the
right directed strong ray s at p, as illustrated in Figure 19. Both s and t are
on tangents on Bd(A1) on different sides of L. As t and the right canonical
ray at gl already intersect outside UC(B2), by monotonicity the intersection
of s and t is outside UC(B2).

L
p

x

y

B2

gr

r

A2

J

gl

t
s

Fig. 19. The situation of joining two splitters over the new points J on UV(A2).

On B′
2 we have the temporary splitter. We determine all strong ray inter-

sections using the temporary splitter (only temporary intersections with xy
can still change). Using the generic algorithm, we instantiate all suspended
searches and advance them to find valid light certificates, possibly selecting
selectable points as we go.

6 Re-establishing the merging certificate

We use a certificate as described in Section 4 for the binary merging of two
upper hulls. Re-establishing such a certificate uses several concepts that were
already introduced for the extractor. It is different because the geometry is
easier, points do not move from one participating set to the other. In return
there are more cases to be considered, now there are different polarities, several
equality points and bridges.

In analogy to the names in the extractor, we consider the case where a
point r ∈ B1 is deleted, leading to the set B2. The neighbors of r on UV(B1)
are x and y, the list L consists of the new points on UV(B2) between x and y,
the points that replace r. Let X be the rightmost strong ray intersection,

37

equality point, or selected point (unchanged) on Bd(SCHB
(B2)) to the left

of x, and Y the leftmost such point to the right of y. Let L+ ⊆ SCHB
(B2)) be

the points between X and Y . The set to merge with is A, and its shortcut
version A′ = SCHA

(A). Let U ∈ Bd(A′) be the point aligned by the existing
certificate with X, i.e., if X is an equality point then U = X, if X is a strong
ray intersection then U is the selected point having the strong ray, if X is a
selected point then U is the intersection of the right directed strong ray of X
with Bd(A′). Symmetrically we define V for Y . Let J ⊆ Bd(A′) be the stretch
between U and V . The main part of the algorithm here is to bring us in the
position to run the generic algorithm on L+ and J .

We refer to streaks of polarity B over A as normal (like the deleted point),
streaks of polarity A over B are called inverted.

Essentially we have only two algorithms (forgetting about shortcuts, they
do not really change the picture), that we both have already seen in the
extractor: The first is when we have a place where some (inverted) points
of L are identified to be inside UC(A). Then we scan to determine how far
this new (part of a) inverted streak A above B extends (usually looking for
a new equality point, that we know exists). This resembles the algorithm
in the extractor that identifies the surfacing points. Then we create a new
separation certificate for this streak, or extending an existing one, using the
generic algorithm. (Both sides advance in their life-cycle.) The other one is to
try to close the gaps in a certificate B above A, working under the assumption
that the part of L+ is above Bd(A). (using the lasting splitters of A and a
temporary splitter for L+.) If this assumption turns out to be wrong, we use
the first algorithm to identify a new streak. To finish the work we also have to
create new shortcuts and to find new bridges. The complete algorithm looks
somewhat more complicate, mainly because we have to consider several cases
in the beginning, when we take care of lost equality points. All these cases
somehow fit to the above general description, but they need small adjustments
to the specific situation. The different cases stem from the possibility that each
of the two deleted segments xr and ry can intersect Bd(A) once, twice or not
at all. The different possibilities are illustrated in Figure 22.

6.1 Applying shortcuts

Applying shortcuts when merging is more complicated than in the extractor,
here we have to apply shortcuts to all of L. By Lemma 7 there are at most 3
shortcuts that have cutting points on xr or ry.

The result of this algorithm is that the data structure represents L+ ⊆ B′
2

(determining X and Y amounts to scanning over O(1) points), and the cutting

38

r

new cutting point

h1

h2
B

obsolete cutting points

Fig. 20. Applying shortcuts to B after the deletion of r. The active shortcut defined
by line h1 becomes futile and obsolete. The active shortcut defined by h2 shortens
and changes one of its cutting points.

Fig. 21. Algorithm “apply shortcuts”
determine set X ⊆ HB of shortcuts cutting xr and ry (|X| ≤ 3)
forall (l ∈ X)

scan L and determine new cutting point(s) with l
adjust data structure for L: shortcut flag, cutting points
if (no point of L ∪ {x, y} above l) then delete l from HB

points with xr and ry are deleted.

6.2 Scanning for an equality point

Assume we found an inversion, a vertical line h where now Bd(A) is above Bd(B),
given by the intersections of h with both hulls. Assume we are in the situa-
tion that we know there is another equality point, and we want to identify it
algorithmically, for example in case (b), where we know that the new streak
β ends at an equality point of L+ and J . We can afford to scan over inverted
points, this is advancing the life-cycle of the scanned over points: So far we
assumed that for them we still have Bd(A) below Bd(B), which we now prove
to be a wrong assumption.

The geometric side of this algorithm is a simple vertical sweep line, say left-to-
right. We have a sweep line σ that stops at every point of UV(A) and UV(B′

2).
For every such line we determine the intersection with Bd(A) and Bd(B). We
identified the equality point if on σ we have Bd(B2) is above Bd(A).

As this process extends one inverted streak, it simultaneously shrinks a normal
streak. We reflect this shrinking in the data structure by deselecting points,

39

(b)(a)

(e) (f)

(c) (d)

τ γ1
δ γ2

τ γτ
β

x y

r

x
y

r

δ

δ

β

β

δ

δ

x y

r

γ δ

δγ
τ

r

α δ β

βδα yx

α = β

x y

r

π

x
y

r

τ βδγ

βδγ δ π
τ

τ

τ
γ2γ1

π

A B2

B1

Fig. 22. Different cases of lost equality points. The streaks named γ are trivial
(the locally inner hull is entirely on xr or ry, there are no selected points or lasting
splitter, the shortcut outer hull consists of less than 6 segments) before the deletion.
The arrows above the situation indicate streaks before the deletion, arrows below
the situation after the deletion. In the cases (c), (e) and (f) there are two outcomes
possible, in case (c) we might have to join two non-trivial streaks. In the new
streaks named δ, τ, π there can always be an even number of additional equality
points. The symmetric case for (b) is reffered to as (b’) (β is then called α), the
same for (d) and (e).

shrinking lasting splitters, first finishing suspended searches as described in
Section 4.9.

We prepare the generic algorithm to establish/complete a certificate on the
extend streak by extending a lasting splitter of points on UV(B), and a tem-
porary splitter of points on A′. Before running the generic algorithm we extend
the temporary splitter up to the next strong ray intersection, because of short-
cuts these are only constantly many points.

If we encounter a formerly trivial inverted streak, this streak gets united with
the streak we are currently extending (for example in case (e) β “eats” γ).

40

Note that scanning over a trivial inverted streak takes O(1) time because we
use the shortcuts.

6.3 Modified selection

In the generic algorithm for the not-inverted streak (δ, τ, π in Figure 22), it
is possible, that a preselected point p ∈ UV(A) (a point we decided to select
trying to complete a certificate that UV(A) is locally inside Bd(B)) is actually
above Bd(B). We identify the situation when we determine the intersection
of Bd(B′) with the vertical line through p, using the temporary splitter, the
first step of the selection algorithm. Then we found a new streak of polarity
A over B that we explore as described in the Figure 23 and Section 6.2.

Fig. 23. Algorithm “explore inverted streak” (explore A above B)
while (the new/changed streak is not bound by equality points)

extend streak (vertical sweep-line)
shrink lasting splitter of A

make found equality points explicit in representation
gosub find new bridges
place scanned part of Bd(A) in temporary splitter
place scanned part of Bd(B) ⊂ Bd(L) in lasting splitter
gosub generic algorithm for inverted streak
return (new streak has complete certificate)

6.4 Algorithm

Reacting to a deletion we run the algorithm of Figure 24 to re-establish a
complete certificate. The description of the algorithm uses the names of streaks
given in Figure 22. It unifies the treatment of the different cases.

6.5 Joining over dangling search

This case, and its geometric justification, is basically the same as in the ex-
tractor, when we found surfacing points.

As illustrated in Figure 25, we take all of L as new points when joining the
streaks α and β (Figure 22, (c)). As r was outside UC0(A), a monotonicity
argument for rays shows that gl and gr are valid guards, i.e., gl is not in the
shadow of q, and gr is not in the shadow of p. The part of Bd(A′) between

41

Fig. 24. Algorithm: Deletion of r ∈ UV(B)
compute B̂′

2 = SCH(B̂2) and L+ (apply shortcuts)
identify J , and preselect selected points of J
analyze lost equality points
place bridge-protectors for bridges using r
scan L and mark vertical lines through lost equality points
if(one lost equality point on xr) (cases (b’), (c), (e’))

then extend streak α to the right until new equality point
if (found beginning of β instead) (case (c) “α = β”)

join α and β over suspended search (Section 6.5)
goto generic algorithm to complete certificate on α = β

gosub generic algorithm on α (inverted)
if(one lost equality point on ry) (cases (b), (c) top, (e))

then extend streak β to the left
gosub generic algorithm to complete β

if(pair lost equality point on xr) (cases (d), (e), (f))
then extend trivial streak γ (γ1) to both sides

gosub generic algorithm for γ
if(pair lost equality point on ry) (cases (d’), (e’) top, (f’) top)

then extend trivial streak γ (γ2) to both sides
gosub generic algorithm for γ

gosub find new bridges above all newly identified equality points

(now the new streaks depicted below the situations in Figure 22 are identified)

place pieces of L+ in not-inverted streaks (δ, τ, π) into one temporary splitter per streak
forall (preselected point p ∈ J ⊆ A)

use temporary splitter to find intersection of vertical line through p with L+

if (p outside L+) (we found a new inverted streak)
then gosub “explore inverted streak”

else (p gives rise to strong certificate)
scan for strong ray intersections with L+, create shortcut (establish strong certificate)

gosub generic algorithm, using “explore inverted streak”
for inverted pre-selected points (Section 6.3)

remove all protectors

the strong ray intersections X and Y contains, by aggressive shortcuts, only
constantly many points that do not advance in their life-cycle from stage
(2) to (3). Hence we can put all of J (Bd(A′) between X and Y) into a
temporary splitter, and account only O(1) time to the deletion.

42

gr = ygl = x A

r

e f

p q

X Y

New

small(shortcut)

Fig. 25. Illustrating the situation of joining two strips into one dangling search.

6.6 Correctness and running time

The algorithm produces a complete certificate. First (analyzing equality points)
inverted streaks are extended as much as appropriate. Whenever the algorithm
finds an inversion, a (new) streak is explored and a complete certificate for
the streak is established. For the not-inverted streaks the generic algorithm es-
tablishes a complete certificate, possibly finding more inverted streaks. Start-
ing with the preselected points, the algorithm keeps track of places, where
the certificate is not yet complete. It only finishes when the certificate is re-
established.

The running time of the scanning algorithm is accounted for by the advanced
life-cycle of the scanned-over points. The generic algorithm is already paid for
when creating the lasting splitters. The remaining cost per deletion is O(1).

6.7 Bridge finding

When we perform the merge-operation (creating a new data-structure), we
search a bridge by a linear scan away from an equality point. We use the
geometric reasoning of Overmars and van Leeuwen (5). Instead of a binary
search, we perform (simultaneously/inter-twisted) two linear scans, usually
away from the equality point. This algorithm considers every point only once,
achieving the aimed-at performance.

If we later find a new equality point (after a deletion), we can use this algorithm
as long as we did not scan over the points before. If the endpoint of a bridge
gets deleted, the points between the equality point and the new bridge are

43

already scanned over (when we found the now-deleted bridge). We avoid this
repeated scan by placing a protector, a double link that marks the stretches of
Bd(A) (and also Bd(B)) between the equality point and the deleted bridge.
If our outward-scan reaches a protector, we jump to the other side of the
protector and continue there. If we continue outwards, the points are fresh
on the upper hull and advance in their life-cycle. Otherwise the scanned-
over points are no longer below a bridge (and they will never get below a
bridge again), and by this advance their life-cycle. After the certificate is
complete again, we remove all protectors. The time spent in placing, using and
removing protectors is charged to the deletion, there are at most 4 protectors
per deletion.

Fig. 26. Algorithm “Bridge finding”
starts at equality point (without bridge) with placed protectors
while(bridge not correct)

adjust one endpoint, jumping to other end of protector on way out

a

old bridge

new bridge

protectors

e

r

fresh points
A

B

v

s

u

Fig. 27. The situation of placing protectors. When processing the deletion of point r
we have to protect parts of the upper hulls of A and B from being scanned again,
when we search for the new bridge.

7 Dealing with degeneracy

So far we used the assumption, that input points are in general position to
avoid dealing with degenerate cases. This is convenient, as it lets us concen-
trate on the important situations instead of getting drowned by special cases.
Here we summarize the situations that benefited from this assumption, and
suggest how to modify the algorithms as to correctly deal with the degenerate
cases.

In the data structure (and algorithm) we have to be prepared to find points,
that act in two roles simultaneously, for example an input-point that is an
equality point or an input point that is also a strong ray intersection.

44

If the same points can be both in A and B, we might see a stretche of Bd(A)
that coincides with a stretch of Bd(B). We can easily handle this by treating
such a stretch as an extended equality point, introducing one more stage in
the life-cycle of a point there is no problem with the accounting. We have to
allow deletion of points that are in such an equality stretch.

We have to decide on a policy if the strong-ray intersection and the intersection
between strong and light ray are the same point. Naturally we allow these
“touching” certificates to not have a gap. In return we have to catch the special
case of a light certificate being based on one line (two guards, no candidate
point) coinciding with a segment of the other hull, because this certificate
contains an equality point (which is identified by checking for the case).

In the bridge-finding we have to break ties in a way that the resulting hull
does not have two collinear segments.

8 Kinetic Heaps

A kinetic heap is a fully dynamic parametric heap with the restriction that
the query line has to move to the right from query to query. This naturally
leads to the notion of a “current time” time t, the argument of the last query,
a kinetic query has to increase t.

Using the semidynamic geometric merging data structure of Theorem 4 we
can design a kinetic heap, as explained in this section.

Theorem 9 There exists a data structure for the fully dynamic kinetic heap
problem supporting, for size parameter n, insert and delete in amortized
O(log n) time, and kinetic find min in amortized O(1) time. The space
usage of the data structure is O(n).

The data structure we present here has several concepts in common with the
construction we present as a proof of Theorem 1 in Section 9. It is simpler
and illustrates several of the techniques nicely.

We use some ideas of the paradigm of kinetic data structures, but we do not
think of it as a kinetic adaption of a static data structure.

Lemma 10 (Kinetic speed up) Let D be a nondecreasing positive func-
tion. Assume there exists a fully dynamic kinetic heap data structure support-
ing insert in amortized O(log n) time, delete in amortized O(D(n)) time,
and kinetic find min in O(1) amortized time, where n is the total number
of lines inserted. Assume the space usage of this data structure is O(n).

45

Then there exists a fully dynamic kinetic heap data structure supporting in-
sert in amortized O(log n) time and delete in amortized O(D(log2 n) +
log n) time, and kinetic find min in amortized O(1) time, where n is the
total number of lines inserted. The space usage of this data structure is O(n).

PROOF. We use the already explained logarithmic method with merging
degree log n. Every line l that is part of the lower envelope of its semidynamic
structure defines an activity interval Il that contains the query-values for
which l is the correct find-min answer from the semidynamic set.

The semidynamic data structure of Theorem 4 allows kinetic find-min queries
in amortized O(1) time: We maintain a pointer to the last answer, and perform
a linear scan to find the answer for the next query. The time spent to perform
the scan is charged to the insertion. The right endpoint el of the activity
interval Il of the current answer line l gives the time until which l stays the
correct answer. We refer to el as the (expiration) event of l.

For the current time t we have the set Lt of lines that are answers for the
find-min queries on all the O log2 n) semidynamic sets. For all lines l ∈ Lt we
store the event el in a priority queue, implemented using a (2,4)-tree, giving
access to the minimum value and element in O(1) time, and amortized O(log n)
insertions, that also pay for the deletions of events (we only delete events that
are stored).

We store Lt in a kinetic heap data structure S given by the assumption in the
lemma. We call S the secondary structure.

For a kinetic-find-min query for time t′ > t we do the following: We check
if t′ is smaller than the minimal (first) event in the priority queue. If so we
conclude Lt = Lt′ , there is no further change to the data structure. Otherwise
we perform delete-min operations on the priority queue until the new minimum
is larger than t′. This identifies a set X of lines, that are not Lt′ . We lazily
delete the lines from X from the secondary structure by merely marking them
as deleted and remove them only when the secondary data structure is rebuilt
because half of the lines stored are marked as deleted. Lazy deletions cause
the size of the secondary structure to increase by a factor of two, but the
additional lines stored do not affect the correctness of the generated output
(answers to queries).

For the semidynamic sets storing a line of X, we perform a kinetic-find-min
query for time t′, leading to Lt′ . We insert the result lines into the secondary
structure and insert the corresponding events into the priority queue. Now the
query reduces to a (kinetic) query for time t′ on the secondary structure.

For a merge operation (stemming from the dynamization technique) we re-

46

move the affected events from the priority queue, and perform lazy deletions
of the lines in the secondary structure. We query the merged data structure
for the current time and insert the answer-line in the secondary structure, and
the event into the priority queue.

For a delete(l) operation we delete l from the semidynamic data structure
it is stored in, and if the deleted line is currently stored in the secondary
structure we delete it from the secondary structure (not lazily). We call this
situation a forced deletion. We also delete the event from the priority queue.
We query the changed semidynamic data structure for the current time and
insert the line into the secondary structure and the event of the answered
segment into the priority queue.

The run-time analysis keeps accounts for the lines. Note that the priority
queue and the secondary structure have size O(log2 n), and that updates of
the priority queue and insertions into the secondary structure take amor-
tized O(log log n) time. Every line pays at each of the at most log n/ log log n
merging levels one insertion into the priority queue and into the secondary
structure. This includes deletions from the priority queue and lazy deletions
from the secondary structure. It totals to O(log n) amortized time, charged to
the insertion of the line. The kinetic queries on the semidynamic data struc-
tures is paid for by the cost for merging them, and totals to amortized O(log n)
per line. A deletion pays for the forced deletion of one line in the secondary
structure and for querying and reinserting one event into the priority queue,
and a line into the secondary structure. 2

Using Preparata’s (6) semidynamic insertion only data structure, we achieve
insertions in O(log n) time. The O(n) amortized deletions do not only rebuild
the data structure, but also pay for advancing the kinetic search over all seg-
ments, thus achieving amortized O(1) kinetic queries. Using this data struc-
ture in Theorem 10 (bootstrapping) we get O(log n) amortized insertions, O(1)
amortized queries and amortized O(log2 n) deletions. Bootstrapping one more
time reduces the amortized deletion cost to O(log2(log2 n)+log n) = O(log n),
yielding Theorem 9.

9 General queries: Interval tree

Note that Theorem 5 and Theorem 10 are very similar, in particular the loga-
rithmic method is applied in the very same way, i.e., with merging degree log n
and the data structure of Theorem 4 for the semidynamic sets. Again we use
of secondary structures, each of limited size logO(1) n. The difference is that
we here need several such secondary structures, and each of them will be as-

47

sociated with the nodes of an interval tree. The activity interval Il, as defined
in Section 8, is used to decide in which secondary structure to store line l.
Geometrically this construction is very similar to Chan’s (9), in particular the
reasoning for the correctness of the queries is nearly the same, our construction
allows the same queries with the same performance.

A traditional interval tree is a data structure that stores intervals in a way that
allows efficient containment queries. More precisely for a set J of intervals, the
query consists of x ∈ R and the answer consists of all intervals I ∈ J such
that x ∈ I. This data structure is described in detail in the textbook (16,
page 210). It is due to Edelsbrunner (21) and McCreight (22). The central
idea is to store the intervals at the nodes of a search tree, such that only
intervals stored on a standard search-path for x have to be considered for the
containment query. We create a secondary structure for every node of T. If we
store the lines of the lower envelopes of the semidynamic sets at appropriate
nodes of T, as given by their activity interval, we can correctly answer find-
min queries, by collecting answers along a root-to-leaf path and taking the
minimum.

The tree structure of an interval tree T is that of a search tree storing at the
leafs the endpoints of the intervals (here it will be the endpoints of intervals
defined by chunks, as defined later). For every interval I exists a canonical
node of T, defined as the node v of T where both endpoints of I are (would
be) leafs below v, but none of the children of v enjoys this property. Like Chan
we choose the underlying tree structure to be that of an insertion-only B-tree.
In contrast to Chan we choose the degree parameter to be log n, independent
of the bootstrapping. Now the height of T is bounded by O(log n/ log log n).
Even if we allow secondary structures of size logO(1) n, we achieve vertical
line queries in O(log n) time (using the assumption that secondary structures
allow queries in logarithmic time). Unlike Chan we allow a line to be stored
anywhere on the path from the root to the canonical node of its activity
interval in T. This does not compromise the correctness of the queries, but
it saves time when determining for a line the appropriate node of T to store
it. We use this freedom to perform the movement of lines lazily (as a result
of changed lower envelopes in the semidynamic sets, i.e., because of merge or
delete operations).

Like in the kinetic case we can allow every line to be inserted into a secondary
structure once as the result of a merge operation of the dynamization tech-
nique. Here we also have to determine appropriate nodes of T where we should
insert the lines. We address this problem by partitioning the lower envelope
into chunks of Θ(log n/ log log n) consecutive segments. Given that we have
only O(log n/ log log n) merging levels, and because every deletion causes only
constantly many chunks that are not accounted for the mergings, the overall
number of chunks invented is O(n).

48

For every chunk c we determine its activity interval Ic as the union of the
activity intervals of the lines stored in c. We search the canonical node u of Ic

in T, which takes O(log n) time. This costs per segment O(log log n) time, the
same as for inserting the line into the secondary structure at u. This chunk
size is small enough to move the chunk in O(log n) time, i.e. to insert all lines
into a different secondary structure. This allows us to maintain the chunks
under deletions of lines and also bounds the work when we split nodes of the
interval tree.

The size of a secondary structure is bounded by O(log n · log n
log log n

· log2 n
log log n

), the

terms stemming respectively from the degree of T (which bounds the number
of chunks from one semidynamic envelope with the same canonical node),
the chunk size, and the number of semidynamic sets. We simplify this bound
to O(log4 n).

The creation of a new chunk leads to the insertion of its interval-endpoints as
leafs into the interval tree. This eventually requires us to split the nodes of
the underlying B-tree, we destroy the associated secondary structure, and we
re-insert all the lines at appropriate secondary structures. (For this we need
the node to know which chunks it hosts, this is not too expensive.) Chan’s
argument bounding this work spent in node-split operations carries over: We
charge the cost for splitting a node entirely to the newly created node. If we
split the node u and create a sibling v of u, we pay O(log n) for every chunk c
that is currently supposed to be stored at u (before the split). This certainly
pays for finding the new canonical node of c and also to pay for inserting all
lines of c into Qu or Qv. If we split a node on the 4 levels closest to the leafs
of T, we know that the split affects not more chunks then there are leafs below
the node (every chunk has its endpoints in two leafs below its canonical node).
On level 1 we have at most n/ log n nodes, each having Θ(log n) leafs below
it, on level 2 at most n/ log2 n nodes, each having Θ(log2 n) leafs below it, and
so on. As we only consider 4 levels in this way, we have O(n) many chunks
affected by split operations accounted for in these 4 levels. Moving a chunk
costs O(log n) time, the total work is O(n log n).

There are at most O(n/ log4 n) nodes in T remaining to be accounted for. We
can have at most O(log n · log2 n) (degree of T, number of semidynamic sets)
many chunks stored at one node at a time. We pay O(log n) per affected chunk,
so the total work we have to pay for splitting nodes is O(n

log4 n
· log4 n) = O(n).

As part of moving a line from one secondary structure to another, we also
need to delete the line from the secondary structure it is currently stored in.
We will perform these deletions lazily, delaying the insertion of the line into
the new secondary structure as well. We call this concept a lazy movement.
It achieves that every line is stored in at most one place in the interval-tree.
When half of a secondary structure consists of lazily moved lines, we rebuild

49

it from scratch. Only then we execute lazy movements, i.e., we insert the lines
in the secondary structure they belong.

If a line l is part of the merging of semidynamic sets, its activity interval
shrinks because the line l is now competing with more lines for a place on the
lower envelope. This means that the canonical node of the interval of a line
will in general be closer to the leafs of T. We do not really need to move the
line, it is still stored on the path from the root to its canonical node. If the
line l is no longer on the lower envelope (but is still not deleted from S) we can
store l at any node in the interval tree without compromising the correctness
of the queries.

In contrast to this, a deletion of a line l ∈ S can enlarge activity intervals.
From the semidynamic data structure we get a piece L of the lower envelope,
that replaces l. This piece (possibly together with neighboring chunks) gets
divided into new chunks. For every chunk we determine the canonical node
of T. We make sure that every line h of L is stored in T at a node above
its canonical node, possibly inserting it at the canonical node of the chunk.
If it is stored at node u of T we check that Ih is between the relevant keys
of the parent node of u. If this check fails, the line h has to be stored at a
different node of T, we perform a forced move, inducing the additional cost of
deleting h from the secondary structure at u, using the delete operation. As
this operation is expensive (compared to the insertion), it is essential for our
analysis to bound the number of forced moves. We charge this cost to deletion
of line l in the following way. Every line h that was a neighbor of l on some
lower envelope might be stored in T (when it handled by a forced move) based
on an activity interval stemming from l. We distinguish two cases depending
on the performance of the deletions of the secondary structure.

Assume D(log4 n) = Ω(log n) (e.g. D(n) = O(n) in the first bootstrapping
step). Every line participates in at most O(log n/ log log n) merge operations,
this also bounds the number of forced moves a deletion can cause. This term
is by assumption bounded by O(D(log4 n)), resulting in a total amortized cost
of O(D(log4 n)2) as claimed in Theorem 5.

Otherwise we have D(log4 n) = O(log n) (e.g. D(n) = O(log8 n) in the second
bootstrapping step). In this situation we move some of the costs for forced
moves to the insertions without changing their asymptotic performance. To do
so, we introduce barrier levels of the merging in the dynamization technique.
At a barrier level, all lines in the created semidynamic set get paid a forced
move. Choosing the parameter b(n) = log n/D(log4 n), we charge b(n) forced
moves to every insertion. Now a deletion has only to pay for forced moves back
to the last barrier level, leaving us with less than log n/b(n) forced moves to be
paid by the deletion. This charges O(b(n) ·D(log4 n)) = O(log n) time to the
insertion, thus not changing the asymptotic performance. The forced moves

50

a single deletion has to pay is O(D(log4 n) log n/b(n)) = O(D(log4 n)2). This
yields Theorem 5.

Now we also have to analyze the space usage of the data structure. The interval
tree and the chunks use O(n) space. In the secondary structures every line
uses O(1) space as it is stored in at most one secondary structure. This totals
to a space usage of O(n). This finishes the proof of Theorem 5.

9.1 Tangent / arbitrary line query

If the only query we are interested in is extreme point / vertical line query, the
presented data structure is sufficient. If we are interested in different queries,
it is not obvious how useful the query data structure is. As the geometric
principles of the interval tree are the very same as of Chan (9), queries that
do not require the update-parameters to be changed can immediately used
here as well. As an example we consider (in the primal setting) the following
query: given a point p /∈ UC(S) in the plane, what are the two common
tangent lines of p and S? Translating the query into the dual setting, we ask
for the two intersection points of an arbitrary line with the lower envelope
of LS∗ . Given that we may perform vertical line queries, we can easily verify
a hypothetic answer. Therefore it is sufficient to consider the situation under
the assumption that the line intersects the lower envelope twice.

Let us focus on finding the right intersection of line l with the lower enve-
lope LE(S) for a set of lines S, that is, we are in the dual setting. This is
again an optimization task, we ask for the line of S with slope strictly smaller
than l, that intersects l furthest to the left.

Now we need the geometric argument that we can use such queries in the
secondary structure to navigate in T in a way that leads to the correct answer.

We use the following fact about arbitrary line queries to navigate in the interval
tree of our data structure.

Lemma 11 Let a and b be two vertical lines, a to the left of b. Let S ′ ⊆ S be
two sets of lines such that the lower envelope of S ′ at a and b coincides with
the lower envelope of S. Assume that an arbitrary line query for a line ` on S ′

results in the right intersection point t. If t lies between a and b then also the
right intersection T of ` with S (if it exists) lies between a and b.

PROOF. By the definition of the right intersection point as the leftmost
intersection of ` with the lines of smaller slope in S ′ and S we immediately
have that T is not to the right of t and hence not to the right of b.

51

Assume that the left intersection of ` with LE(S ′) is also between a and b. If
both intersections of ` with LE(S) exist, they are between the intersections
of ` with LE(S ′). In this case the lemma holds.

Otherwise we know that the intersection v of ` with a is below the intersec-
tion u of LE(S ′) with a. Assume that T is to the left of a. Let h be a line
of S \ S ′ that contains T and has smaller slope than `. Then the intersection
of h with a is below v. But then the lower envelope of S intersects a at or
below v, contradicting the statement that the two lower envelopes coincide
on a. 2

Using this lemma, we can process an arbitrary line query for ` in the follow-
ing way: Starting at the root, we perform the query for ` at the secondary
structure Q at the root. If we find that there are no intersections of LE(Q)
with `, we know that there is no intersection of ` with S. Otherwise let u be
the found right intersection point. We find the slab that is defined by the keys
stored at the root that contains u. This slab identifies a child c of the root. We
continue the search at c in the same way, that is, we perform another arbitrary
line query to the secondary structure. Now we take the leftmost of the two
results (stemming from c and the root) and use it to identify a child of c. This
process we continue until we reach the leaf level. There we take the leftmost
of all answers we got from secondary structures, and verify it by performing
a vertical line query. It is necessary to use the currently leftmost answer as
we allow lines to be stored higher up in the tree. It is necessary to verify the
outcome, we cannot exclude the case that all queries to secondary structures
find two intersection points, whereas there is no intersection of ` and LE(S).

For the bootstrapping we have to argue that we can perform arbitrary line
queries in O(log n) time. As this kind of search is the main ingredient to
perform fast inserts, this does not require an additional algorithm.

As the arbitrary line query in T performs precisely one query to a secondary
structure at every level of T, we get an overall time bound of O(log n).

If we run this query for a point p ∈ S, we determine whether p ∈ UV(S) and
if this is the case, we find the neighbors of p in UV(S). We also realize if p is
a point on a segment of Bd(S). Tangent queries allow us to report a stretch
of k consecutive points on the upper hull of S in time O(k · log n). This is by
a O(log n) factor slower compared to an explicit representation of the convex
hull.

52

10 Lower bounds

In this section we derive lower bounds on running times that asymptotically
matches the quality of the data structures we presented in the previous sec-
tions. Our method here is completely reduction based, it does not exploit the
online-character of a data structure. We use the data structure to solve a
parameterized decision problem, arriving at the lower bound.

The lower bounds on the decision problems hold for algebraic computation
trees (23). A real-RAM algorithm can be understood as generating a family of
decision trees, the height of the tree corresponds to the worst-case execution
time of the algorithm. This is the model used in the seminal paper by Ben-
Or, from where we take the main theorem (23, Theorem 3) that bounds the
depth of a computation tree in terms of the number of connected components
of the decided set. We consider the following decision problem, a variant of
element-distinctness.

Definition 3 For a vector z = (x1, . . . , xn, y1, . . . , yk) ∈ Rn+k we have z ∈
DisjointSet+

n,k ⊂ Rn+k if and only if y1 ≤ y2 ≤ · · · ≤ yk and for all i and j
we have xi 6= yj.

Lemma 12 For 8 < k ≤ n the depth h of an algebraic computation tree (the
running time of a real-RAM algorithm) deciding the set DisjointSet+

n,k is
lower bounded by h ≥ c · n log k for some c > 0.

PROOF. Let yi = i for i = 1, . . . , k. There are (k + 1)n ways of distributing
the values xi into the intervals formed by the yi, no two of them can be in
the same connected components of DisjointSet+

n,k. Using (23, Theorem 3)
we get 2h3n+k+h ≥ (k + 1)n. The claimed lower bound follows with c = (1 −
log 9
log 10

)/(1 + log 3). 2

The amortized running time functions in the following theorems are to be
understood that insertions (into an empty data structure) of n elements take
a total of n · I(n) time.

Definition 4 semidynamic kinetic membership asks for a data structure
that maintains a set S of real numbers under insertions, and allows for a
value x the query x ∈ S, provided that x is not smaller than any previously
performed query.

Theorem 13 Let A be a data structure that implements semidynamic ki-
netic membership. For size parameter n assume that the amortized running
time of the insert operation of A be bounded by I(n) and the amortized run-
ning time for the kinetic-find-min query be bounded by q(n).

53

Then we have I(n) = Ω
(
log n

q(n)

)
.

PROOF. By reduction from DisjointSet+
n,k. We choose the parameter k =

bn/q(n)c. Let the vector z = (a1, a2 . . . , an, b1, b2 . . . , bk) ∈ Rn+k be some input
to DisjointSet+

n,k. We check in linear time whether we have b1 ≤ b2 ≤ · · · ≤
bk. If this is not the case, we reject. We insert all the values ai into A. Then
we perform queries for all the bj (in the natural order). If one of the queries
returns bj ∈ S, i.e., bj = ai for some i and j, we reject. Otherwise we accept.
This correctly solves the DisjointSet+

n,k problem.

The reduction takes linear time. By Lemma 12 the running time of this algo-
rithm is bounded by (I(n) + d) ·n + q(n) · k ≥ c ·n · log k for some constants c
and d. Using our choice of k we get (I(n) + d) · n + n ≥ c · n · log bn/q(n)c.
Dividing by n and rearranging terms yields I(n) ≥ c·log(bn/q(n)c)−1−d. 2

Note that for q(n) = O(n1−ε), Theorem 13 implies I(n) = Ω(log n). Another
example is that I(n) = O(log log n) yields q(n) = Ω(n/(log n)O(1)). Theo-
rem 13 shows that the amortized insertion times of the data structure of
Theorem 9 and Theorem 1 are asymptotically optimal.

Theorem 14 Consider a data structure implementing the semidynamic mem-
bership problem on the real-RAM that supports member queries in amor-
tized q(n) time, for size parameter n.

Then we have q(n) = Ω(log n).

PROOF. Reduction from DisjointSet+
n,k. Let I be the function such that k·

I(k) is a (tight) general upper bound on the time to insert k elements into an
initially empty data structure. We choose the parameter n = k ·(1+I(k)). Let
the vector z = (a1, . . . , an, b1, . . . , bk) ∈ Rn+k be an input to DisjointSet+

n,k.
We check in time k whether we have b1 ≤ b2 ≤ · · · ≤ bk. If this is not the
case, we reject. We insert the values b1, . . . , bk into the data structure. Now we
perform queries for the values a1, . . . , an. By Lemma 12 we get for sufficiently
large k and some constant c the inequality k · (1+ I(k))+n · q(k) ≥ c ·n · log k.
Using k · (1 + I(k)) = n and dividing by n we get q(k) = c · log k − 1 . 2

A data structure for the semidynamic predecessor problem maintains a set S
of real numbers under insertions, and allows queries for r, reporting the ele-
ment s ∈ S, such that s ≤ r, and there is no p ∈ S with s < p ≤ r. From
Theorem 13 and Theorem 14 follows the next corollary.

54

Corollary 15 Consider a data structure implementing the semidynamic pre-
decessor problem on the real-RAM that supports predecessor queries in
amortized q(n) time, and insert in amortized I(n) time for size parameter n.

Then we have q(n) = Ω(log n) and I(n) = Ω
(
log n

q(n)

)
Corollary 16 Consider a kinetic heap data structure. Assume that for size
parameter n the amortized running time of the insert operation is bounded
by I(n) and the amortized running time for the kinetic-find-min query is

bounded by q(n). Then we have I(n) = Ω
(
log n

q(n)

)
.

PROOF. We use the data structure to solve the semidynamic kinetic
membership. For an insertion of ai we insert the tangent on y = −x2 at the
point (ai,−a2

i). For a member query bi we perform kinetic-find-min(bi). If
the query returns the tangent line through (bi,−b2

i), we answer “bi ∈ S”. The
corollary follows from Theorem 13. 2

Finally we can also conclude the main theorem:

PROOF. (of Theorem 2) A semidynamic insertion-only convex-hull data
structure can be used as a kinetic heap (duality), Corollary 16 provides the
bound on the insertions. The bound on the queries relies on Theorem 14, with
the same geometric reduction as in Corollary 16. 2

If instead the convex-hull data structure provides only tangent-queries, the
same lower-bounds hold. Instead of querying with the slope (the value bi in the
proof of Corollary 16, used in the primal setting) of the line that presumable
exist, we query with a point on that line, for example with the point (0, b2

i).
If bi is in the set, one answer line will be (y = 2bix+b2

i). Only for the “neighbor
on the convex hull” query we are back to the bound for the kinetic case (only
bounding the insert operation), we can efficiently answer (one sequence of)
of kinetic queries if we have a “next-neighbor” query.

11 Trade-off

The above lower bounds apply for all non-decreasing functions q(n) and I(n).
The standard data structures for membership queries on the real-RAM are bal-
anced search trees. This establishes a matching upper bound only for the cases
where insertions are required to take Ω(log n) time, namely for q(n) = O(n1−ε).

55

We have the same situation for the dynamic planar convex hull problem. This
raises the question, whether there are data structures that match the lower
bound for other combinations of insertion and query times as well.

There is one simple idea for a trade-off between insertion times and query
times: we simply maintain several (small) search structures and insert into one
of them. In return the query operation has to query all the search structures.
We will describe the predecessor problem and use balanced search trees as the
underlying data structure. We focus on the insertion only case. If we want
to accommodate deletions we have to perform global rebuilding following a
doubling technique. This does not change the (spirit of) the result, it only
makes it more complicated to describe. The argument works for worst-case
and amortized complexities.

We choose a parameter function s(n) that tells the data structure how many
elements might be stored in one search tree. We assume that s(n) is easy
to evaluate (one evaluation in O(n) time suffices) and non-decreasing. The
data structure keeps two lists of trees, one with the trees that contain pre-
cisely s(n) elements and the other with the trees containing less elements. For
an insert(e) operation we insert e into one of the search trees that contains
less than s(n) elements. If no such tree exists, we create a new one. When s(n)
increases, we join the two lists (all trees are now smaller than s(n)) and create
an empty list of full search trees. For a query operation we query all the search
trees and combine the result.

The (amortized) insertion time is I(n) = O(log s(n)), the query time is q(n) =
O(n

s(n)
log s(n)). We consider the term

log
n

q(n)
= Ω

(
log

s(n)

log s(n)

)
= Ω(log s(n)− log log s(n)) = Ω(log s(n)) .

This means that we achieve according to Theorem 14 optimal amortized in-
sertions times.

If we are interested in a data structure for the membership, predecessor or
convex hull problem that allows queries in q(n) time for a smooth, easy to
compute function q, then this technique allows us to have a data structure
with asymptotically optimal insertion times.

12 Open problems

It remains open whether a data structure achieving worst-case O(log n) update
times and fast extreme-point queries exists. It is also unclear if other queries

56

(like the segment of the convex hull intersected by a line) can also be achieved
in O(log n) time, or if it is possible to maintain a balanced search tree of the
points currently on the convex hull. Furthermore it would be desirable to come
up with a simpler data structure achieving the same running times.

References

[1] R. L. Graham, An efficient algorithm for determining the convex hull of
a finite planar set, Information Processing Letters 1 (4) (1972) 132–133.

[2] A. M. Andrew, Another efficient algorithm for convex hulls in two dimen-
sions, Information Processing Letters 9 (5) (1979) 216–219.

[3] D. G. Kirkpatrick, R. Seidel, The ultimate planar convex hull algorithm?,
SIAM J. Comput. 15 (1) (1986) 287–299.

[4] T. M. Chan, Optimal output-sensitive convex hull algorithms in two
and three dimensions, Discrete Comput. Geom. 16 (4) (1996) 361–368,
eleventh Annual Symposium on Computational Geometry (Vancouver,
BC, 1995).

[5] M. H. Overmars, J. van Leeuwen, Maintenance of configurations in the
plane, J. Comput. System Sci. 23 (2) (1981) 166–204.

[6] F. P. Preparata, An optimal real-time algorithm for planar convex hulls,
Comm. ACM 22 (7) (1979) 402–405.

[7] J. Hershberger, S. Suri, Applications of a semi-dynamic convex hull algo-
rithm, BIT 32 (2) (1992) 249–267.

[8] J. Hershberger, S. Suri, Off-line maintenance of planar configurations, J.
Algorithms 21 (3) (1996) 453–475.

[9] T. M. Chan, Dynamic planar convex hull operations in near-logarithmic
amortized time, Journal of the ACM 48 (1) (2001) 1–12.

[10] J. L. Bentley, J. B. Saxe, Decomposable searching problems. I. Static-to-
dynamic transformation, J. Algorithms 1 (4) (1980) 301–358.

[11] G. S. Brodal, R. Jacob, Dynamic planar convex hull with optimal query
time and O(log n·log log n) update time, in: Proc. 7th Scandinavian Work-
shop on Algorithm Theory, Vol. 1851 of Lecture Notes in Computer Sci-
ence, Springer, 2000, pp. 57–70.

[12] K. H., R. Tarjan, T. K., Faster kinetic heaps and their use in broad-
cast scheduling, in: Proc. 12th ACM-SIAM Symposium on Discrete Al-
gorithms, 2001, pp. 836–844.

[13] G. S. Brodal, R. Jacob, Dynamic planar convex hull, in: Proc. 43rd An-
nual Symposium on Foundations of Computer Science, 2002, pp. 617–626.

[14] R. Jacob, Dynamic planar convex hull, Ph.D. thesis, BRICS, Dept. Com-
put. Sci., University of Aarhus (2002).

[15] F. P. Preparata, M. I. Shamos, Computational geometry, An introduction,
Springer-Verlag, New York, 1985.

[16] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computa-

57

tional geometry: Algorithms and applications, Springer-Verlag, Berlin,
1997.

[17] H. Edelsbrunner, E. Welzl, Constructing belts in two-dimensional ar-
rangements with applications, SIAM J. Comput. 15 (1) (1986) 271–284.

[18] T. M. Chan, Remarks on k-level algorithms in the plane, manuscript
(1999).

[19] S. Har-Peled, M. Sharir, On-line point location in planar arrangements
and its applications, in: Proc. 12th ACM-SIAM Sympos. Discrete Algo-
rithms, 2001, pp. 57–66.

[20] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, R. E. Tarjan, Sorting Jordan
sequences in linear time using level-linked search trees, Information and
Control (now Information and Computation) 68 (1-3) (1986) 170–184.

[21] Edelsbrunner, Dynamic data structure for orthogonal intersection queries,
Tech. Rep. F59, Inst. Informationsverarb. Tech. Univ. Graz, Graz, Austria
(1980).

[22] McCreight, Efficient algorithms for enumerating intersecting intervals and
rectangles, Tech. Rep. CSL-80-9, Xerox Park Palo Alto Res. Center, Palo
Alto, CA (1980).

[23] M. Ben-Or, Lower bounds for algebraic computation trees, in: Proc. 15th
Annual ACM Symposium on Theory of Computing, 80 – 86, 1983.

58

