
Optimal Randomized Comparison Based

Algorithms for Collision

Technical Report, Department of Computer Science ETH Zurich,

Number 541

Riko Jacob∗

November 28, 2006

Abstract

We consider the problem of finding two identical elements in a
list of length n by randomized comparison based algorithms. We
find a trade-off between the success probability p and the running
time t, and show that this trade-off is optimal up to a constant fac-
tor. For worst-case running time t, the optimal success probability is
p = Θ

(
min{ t

n , 1} t
n log t

)
. For expected running time t, the success

probability is p = Θ (t/(n log(n))).
As part of this, but of independent interest, we determine the com-

plexity of finding collisions in randomly chosen input according to
three natural (uniform) distributions. Again, we determine the op-
timal (up to a constant factor) trade-off between success probability
(relying on the input distribution) and running time, both worst-case
and expected.

1 Introduction

We consider the problem of finding two equal elements, called a collision, in
a list. This is a fundamental problem in computational complexity theory
and among the first decision problems for which non-trivial lower bounds
were known. It is usually formulated as the decision if all elements of a

∗ETH Zurich, Institute of Theoretical Computer Science, 8092 Zurich, Switzerland.
E-mail: rjacob@inf.ethz.ch.

1



list are different, and is hence called “element uniqueness” or “ele-
ment distinctness.” Intuitively, a positive answer, and hence the deci-
sion, requires that the total order of the elements is determined. Hence,
in many models of computation, the lower bound of Ω(n log n) for sorting
carries over to this decision problem. The problem has been studied in all
kinds of machine models, for example in the stronger algebraic decision tree
model [BO83], in a general decision tree setting [Bop94], or on a quantum
computer [BDH+05, AS04].

The investigation in this paper was triggered by a question in cryptog-
raphy. There, we would like to know the precise complexity of computing
discrete logarithms in a cyclic group. One promising approach to prove
lower bounds for this problem are abstract models of computation [Mau05].
For example, an abstract model with comparisons is appropriate to ana-
lyze the algorithm of Pohlig and Hellman [PH78]. In this setting, we are
interested in the comparison based complexity of finding a collision with a
certain probability.

For a comparison based algorithm, it is actually equivalent to find a
collision or to state the existence of a collision without making an error.
Certainly, if the algorithm needs to show a collision to have success, it can
as well just state that there is a collision. But also if a comparison based
algorithm announces the existence of a collision only if it is actually present
in the input, then it must have compared two identical elements, and hence
is in the position to report this collision.

Here, we consider randomized algorithms (in the Monte-Carlo sense)
with one-sided error. Such an algorithm must announce an existing collision
only with probability p, but never claim a collision for an input consisting of
distinct elements. We are interested in the dependence of the running time
on the success probability p. More precisely, we consider both the success
probability p and the running time t as functions of n, and are mainly
interested in the asymptotic behavior for large n. The achieved trade-off
can be formulated in two ways. Either we try to achieve a certain p and
optimize the running time, or we fix the running time and try to achieve the
best possible success probability. As we will see, changing the running time
requirement by a constant factor results in a constant factor in the bound on
the probability, and vice versa. Therefore, these two ways of looking at the
problem are equivalent. We also analyze the number of random bits needed
by the algorithm. All in all, we give an algorithm with worst-case running
time t that achieves for t(n) > 2 success probability pt = min{ t

n , 1} t
n log t ,

and uses log 1
pt

random bits. Both these values are optimal up to a constant

2



factor.
Note that for in one step we can test a single edge and achieve a success

probability of 1/n2. From now on, we assume p ≥ 1/n2.
Our approach uses Yao’s Minimax-principle [Yao77, MR95, p. 35], lead-

ing us to consider deterministic comparison based algorithms and their be-
havior when the input is drawn from a uniform distribution. Relying upon
the input distribution, the algorithm should detect a collision with proba-
bility p. More precisely, we look at three different distributions: uniformly
without collision, and uniformly with precisely one collision. We are inter-
ested in the necessary (asymptotic) running time, both as the worst-case
running time of the algorithm, and as the expected running time over the
randomly drawn input.

1.1 Related Work

The inverse setting, where a randomized comparison based algorithm solves
“element uniqueness” (and not “collision”), has been studied by Snir [Sni85].
Here, the algorithm needs to recognize that all elements are different with
probability p, but is not allowed to misclassify an input with collision. He
shows a lower bound of λ(n log n − log(p(1 − λ)) for all 0 < λ < 1, which
yields, for example, for p = 1/ log n an Ω(n log n) lower bound. This shows
an important difference to collision, where this success probability can be
achieved in O(n) time. Grigoriev, Karpinski, Meyer auf der Heide, and
Smolensky [GKMadHS97] show that if the algorithm is allowed to misclas-
sify with probability p < 1/2 in both directions (two-sided errors), even
for algebraic decision trees of constant degree, there is an Ω(n log n) lower
bound.

For “collision”, or “element non-uniqueness” as they call it, Man-
ber and Tompa [MT82, MT85] give a lower bound of Ω(n log n) for compar-
ison based algorithms that are not allowed to announce a collision if there is
none, and need to announce an existing collision with probability 1/2. This
is the special case of our result with p = 1/2. Similar to our main technical
Lemma 3, they bound the number of linear extensions of a graph, given that
at least half of the edges must be used, an idea going back to [MT84]. In
contrast to the results presented here, their estimate heavily depends on the
success probability being 1/2, and does not give a lower bound for smaller
probabilities like 1/ log n.

Our Lemma 3 is an observation about the structure of the directed acyclic
graph Gc describing the outcomes of comparisons at a (leaf) node c of the
comparison tree. The observation is that a high success probability can only

3



be achieved if the number of linear extensions is small. The permutations
ending at c describe linear extensions of Gc, and the success probability
of one permutation/linear extension π is given by the number of successor
relations of π that coincide with edges of G. This number is also known as
the number of steps of π in G [CH80], and is n minus the number of jumps.
There is some recent interest in determining the average jump number of a
grid [Coo06], which is equivalent to determining the success probability of
the grid. The problem of computing the number of linear extensions of a
given graph is known to be #P-complete [BW91], but can be approximated
in polynomial time. According to [BT03], the idea of estimating the number
of linear extensions by using the entropy method goes back to Kahn [Kah02].

The connection between sorting and element distinctness is well known [BO83].
Recently, there has been some interest in approximative sorting [GSS06] with
natural measures of sortedness. One can understand the DAGs produced
by our algorithms as some kind of sorting, and the success probability as
the measure of sortedness. Technically, one key difference is that the task
in [GSS06] is transforming the input, whereas our setting asks only for a col-
lision. Hence, their lower bounds can be achieved by reductions and hence
hold also in the algebraic setting [BO83], whereas this is not clear for the
problems considered here.

Similar to results on sorting, the lower bounds are valid in a strong,
non-uniform model of computation (comparison trees), whereas the algo-
rithms are quite general and can be implemented in many uniform models
of computation.

1.2 Preliminaries

The input to Collisionn consists of a list of n numbers x1, . . . , xn. The
answer is YES if there exist i 6= j such that xi = xj , and otherwise NO.
The numbers are assumed to be atomic to the algorithms, and the only
operation on numbers is the comparison x ≤ y. Hence, the main feature of
an input is the order type (with identities), and without loss of generality
we can assume that all xi ∈ {1, . . . , n}. The inputs without collision are
then characterized by a permutation i 7→ xi. The distribution p is defined
to be the uniform distribution over these n! different inputs.

The inputs with precisely one collision can be characterized by a per-
mutation π and a pivot o ∈ {1, . . . , n − 1} of the collision, meaning that
the value o is changed to the value o + 1, creating two elements with this
value. More precisely, the input is given by xi = π(i) if π(i) 6= o and
xi = o+1 = π(i)+1 if π(i) = o. Consider the permutation π′ that is identi-

4



cal to π, only the values of o and o+1 are exchanged. Then the input (π, o) is
indistinguishable from the input (π′, o). Further, these two representations
are the only way to create this order-type. The distribution q is defined as
the uniform distribution over these n!(n − 1)/2 different inputs. With q|S
we denote the restriction to permutations from some arbitrary set S with
uniform probability.

There is an alternative random experiment that draws an input from
distribution q. First, choose uniformly a pair i < j of indices. Set xi =
xj , and then choose a random ordering (permutation) of the values of the
variables x1, . . . , xj−1, xj+1, . . . , xn. In this way, (n− 1)!n(n− 1)/2 different
order types are created, hence this is the same as drawing from q.

The focus of our considerations is the number of comparisons performed
by an algorithm. Hence, we model the algorithm as comparison trees of the
following type: A comparison tree T is a rooted tree where every internal
node c has a left and a right child and is annotated by a pair (i, j). Every
input x = x1, . . . , xn (with or without collision) defines a path P (x) in T ,
the next node is given by the outcome of the comparison, for xi < xj the
left child, for xi > xj the right child. If the comparison yields xi = xj , the
path stops at the corresponding node. Here, we assume that all nodes of
the tree are reached for some input.

This is a non-uniform model of computation, the tree for n elements
need not be similar in any way to the trees for other n.

The success probability pT of T is the probability for an input x (with
collision) drawn from distribution q that the last node of P (x) is an inter-
nal node, and hence the collision is indeed detected. Formally, we define
the random variable S(x) to be 1 if P (x) ends at an internal node, and 0
otherwise, i.e., P (x) ends at a leaf of T . For a given probability distribution
on the input, we define the success probability as E[S(x)].

This modeling reflects that we require our algorithms to have found the
collision if they answer YES. Indeed, any well defined comparison based
algorithm with this property can be described by a comparison tree T , with
the same success probability and performing not more comparisons than the
original algorithm.

By |P (x)| we denote the number of internal nodes on P (x), which is for
randomly chosen x a random variable, representing the number of compar-
isons or running time on input x. We are interested in the expected running
time Cq = Eq[|P (x)|] and Cp = Ep[|P (x)|]. We are also interested in
the worst-case running time of T which is the maximal running time
(number of comparisons) for a possible input, which is given by the height
of T .

5



For the purposes of analyzing T , we can annotate every node c of T
by the directed graph Gc that reflects the already performed comparisons.
The vertices of G′

c are the variables, and there is a directed arc from xi

to xj if the variables were compared, and xi < xj . By this definition, G′
c is a

directed acyclic graph. Since the order relation is transitive, and because we
are interested in single collisions we consider the irreducible core Gc of G′

c,
i.e., the graph with the fewest edges and the same transitive closure as G′

c.
This leads to an alternative way of computing the success probability

of T that explains the connection to the number of jumps of a random linear
extension of a DAG. Choose uniformly a permutation π. The corresponding
input vector defines a path to a leaf c of T , and π can be understood as a
linear extension of Gc. Actually, the node c is the only leaf of T with this
property. Now, uniformly choose a collision o ∈ {1, . . . , n − 1} (identifying
the value o and o + 1). This collision is detected if and only if there is an
arc between the vertex i with π(i) = o of Gc and its successor in π, which
is called the success probability of the permutation π in T , and hence
in Gc.

Define the success probability pc of Gc by the probability that a uniformly
chosen linear extension of Gc and a uniformly chosen collision is detected
by Gc. Let uc be the number of linear extensions of Gc, and define fc = u/n!.
Then, the probability of reaching (ending at) c with a uniformly chosen
permutation is fc, and we can express the success probability of T as the
weighted sums of the success probabilities of the leaves:

pT =
∑

c is leaf of T
fc · pc .

Alternatively, the success probability of a graph G is given as the average
over all vertices of the following success probability: The probability of the
vertex v to not be the last in the linear extension times the probability that
the successor in the linear extension is connected to v with an arc.

2 The Algorithms

We start with the slightly simpler deterministic algorithms that rely upon
random input. Later we also consider randomized algorithms. The connec-
tion between element uniqueness and sorting is well known for comparison
based models of computation. Not surprisingly, all algorithms presented
here are based on sorting some subset of the input values. We use that the
rank k element of a list can be found in linear time [BFP+73]. Remember
that sorting k values takes O(k log k) comparisons.

6



2.1 Deterministic or Worst-Case Time

Consider the following Algorithm 1 that is designed to run in worst-case O(t(n))
time. For t(n) = n log n time, this algorithm sorts the complete input and

Algorithm 1: Deterministic collision find
Determine r = min{n, t(n)} and k = min{r, t(n)/ log t(n)};1.1

Select the k-smallest element xj of R = {x1, . . . , xr};1.2

Determine S := {x ∈ R | x ≤ xj} /*|S| = k */
Sort S;1.3

return the collision if two elements of S are equal;

hence finds the collision with probability 1. For t(n) = O(1) the success
probability is O(1/n2), comparable to testing a single edge. Note that for
the interesting case t(n) ≤ n log n we always have k = t(n)/ log t(n).

Lemma 1. Algorithm 1 runs in worst-case time O (t(n)) and has for dis-
tribution q success probability at least p = min

{
t
n , 1

}
t

n log t .

Proof. The selection in Line 1 can be achieved in worst-case O(t(n) time [BFP+73].
Sorting k elements can be achieved in O(k log k) = O

(
t

log t log t
log t

)
= O(t)

worst-case time, for example with heap sort.
To compute the success probability of Algorithm 1, we consider the al-

ternative procedure to draw an element from distribution q, where we first
decide upon the two indices i < j of variables that form the collision, and
then on the order of the values. The probability that both i ≤ r and j ≤ r
is r

n
r−1
n−1 . The rank of the value xi = xj within x1, . . . , xr is uniform between

1 and r − 1, hence the probability for it to be ≤ k is The probability that
the collision gets a rank ≤ k is k/(r − 1).

Hence, the success probability of Algorithm 1 is r
n

r−1
n−1

k
r−1 > kr/n2. If

t(n) > n log n, we have r = k = n and hence p = 1, as stated in the lemma.
For n ≤ t(n) ≤ n log n we have r = n and hence p = k/n, the statement
of the lemma. Finally, for t(n) < n, we have r = t(n) and hence r/n < 1,
leading to p = (r/n)(k/n), again the statement of the lemma.

2.2 Expected Time

In comparison to the worst-case time, it is easier to achieve good expected
running times because on some inputs the algorithm may be slow if it is fast
on others. More precisely, if a fraction p of the inputs is sorted completely,

7



the success probability is p, and the expected running time is O(pn log n),
as long as the expected running time of a non-successful input is O(1).

To achieve this, we use that in distribution q and p, the outcomes of
the i-th canonical test, comparing x2i ?< x2i+1 are independent for dif-
ferent i ∈ {1, . . . , bn/2c}. Chose the integer k such that 2−k ≥ p > 2−k−1.
By the assumption p > 1/n2, we have k ≤ 2 log n < bn/2c for n > 7. The
algorithm performs the canonical tests in the natural order. As soon as one
of the tests fails, the algorithm stops. Once test k succeeds, the algorithm
sorts the input and hence finds all collisions. Hence, the success proba-
bility is at least 2−k ≥ p. The expected running time until a failing test is
reached is bounded by

∑k
i=1 i2−i = O(1). Hence, the expected running time

is O(1 + pn log n).

2.3 Randomized Algorithms

2.3.1 Expected time

Again, if only a good expected running time should be achieved, the al-
gorithm is very simple, if we allow to toss an arbitrarily biased coin. With
probability p, we solve the problem deterministically in O(n log n) time, oth-
erwise we do nothing and declare that we find no collision. This algorithm
has expected success probability p and expected running time O(pn log n)
on any input. If only unbiased binary coins are allowed, p should be overes-
timated as 2−k, leading to the same asymptotic performance.

By Yao’s minimax principle [Yao77, MR95, p. 35] and Lemma 9 this is
asymptotically optimal.

2.3.2 Worst-case time

Now consider the case where the randomized algorithm should never exceed
a certain running time, and still find a collision with reasonably high proba-
bility. The idea here is to use few random bits to “simulate” distribution q
in Algorithm 1.

Let t = t(n) ≤ n log n be the goal for a asymptotic worst-case running
time. We design an algorithm with running time O(t(n)) and high success
probability. For the case t < n/2 the variables are divided equally into k =
bn/tc classes, such that the size is bn/kc or dn/ke. Now, choose uniformly
at random two different such classes and call the resulting set of variables R
and define r = |R|. Observe that dn/ke ≤ n/k + 1 ≤ n/(n/t − 1) + 1 =
t/(1− t/n) + 1 ≤ 2t + 1, and hence r = O(t(n)). Divide the set [r] equally
into ranges of length at least t/ log t and at most 2t/ log t. Chose one such

8



range [a, b], determine the rank-a element of R and the rank-b element, such
that another scan over R yields the set S of elements whose rank is in the
range [a, b], and sort this set S. By a similar calculation as for Algorithm 1,
the worst case running time of this algorithm is O(t(n)).

To have success, the algorithm needs to randomly chose the two classes
where the variables of the collision are located, and it must randomly chose
the rank of this collision within the set R.

For the case t < n, there are k ≤ n/t classes, and at most log t ranges,
such that this success probability is at least p = (t/n)2(1/ log t). Otherwise,
only the choice of the range is random, the range with the collision is chosen
with probability at least t

log t
1
n .

The following theorem formulates that this algorithm is optimal in terms
of running time up to a constant factor, and in terms of number of random
bits used up to an additive constant.

Theorem 2. Assume a randomized algorithm A solves Collisionn for
all inputs in time t and with positive success probability. Then, with r =
min{t, n} and pt ≤ 8r2

(n−1)2 log(2t)
, the success probability of A is at most pt

and it uses at least − log pt random bits.

Proof. We see the randomized algorithm A as first using a certain number b
of random bits (biased or unbiased) to select one of at most 2b determin-
istic algorithms with worst-case running time t. By Yao’s minimax princi-
ple [Yao77, MR95, p. 35] and Lemma 11, any deterministic algorithm has
success probability at most pt, giving the bound on the success probability of
the algorithm. Let X = n!(n− 1)/2 be the number of different inputs. The
algorithm has success on at most X · pt inputs, such that the total number
of successful inputs is Xpt2b. If pt2b < 1, there would exist an input that
fails for all random choices. Hence, 2b ≥ 1/pt, b ≥ − log pt.

3 The lower bound

The lower bound proof starts by giving an upper bound on the number of
linear extensions that are compatible with leafs of the comparison tree that
have high success probability. This allows to conclude different worst-case
and expected running times.

The main ingredient is an upper bound on the number of permutations
that are linear extensions of a DAG with high success probability. Addition-
ally, very fast algorithms cannot have a too high success probability because
they must leave some of the input unconsidered. Finally, to argue about all
possible algorithms, the two settings need to be carefully combined.

9



3.1 High-probability DAGs

The following information theoretic consideration shows that not too many
permutations can take many arcs of a given DAG as successors.

Lemma 3. Let G = (V,E) be a directed acyclic graph with n vertices,
V = {1, . . . , n}. Then, the number of linear extensions of G with at least k
arcs in G is at most (

n

k

)
· n!
k!

Proof. Any linear extension with at least k arcs in G can be described by
the set A of additional arcs that need to be inserted into G to yield a
directed path (thinking of G as an order-relation, the additional comparisons
that are necessary to make all elements comparable). Since at least k arcs
of G are used we have |A| ≤ n − k − 1 < n − k. Define TA ⊆ V to be
the starting points arcs in A. Now, the arcs form an injective mapping
γ : TA → {1, . . . , n}. There are at most

(
n

n−k

)
=

(
n
k

)
possibilities for TA, and

at most n!
k! possibilities for γ. This leads to the claimed bound.

Lemma 4. Given a graph G on n vertices and a set S of permutations
on [n]. Assume that the success probability of G when drawing uniformly per-
mutations from S that are linear extensions of G and uniformly the collision
is at least p ≥ n−

1
6 . Then the number u of permutations in S that are linear

extensions of G is bounded by − log u
|S| ≥

pn
6 log n− 3pn− log n

6 − 1 + log |S|
n! .

Proof. For a given linear extension/permutation, the success probability q is
given by the number k of arcs of G it is using as q = k/(n−1). Let R ⊆ S be
the set of permutations with at least k = dpn/2e arcs of G, i.e., permutations
that have success probability at least p/2. By a Markov inequality we have
r = |R| ≥ pu/2, and Lemma 3 yields r ≤

(
n
k

)
· n!

k! . Hence,

u ≤
(

n

dpn/2e

)
· 2n!
pdpn/2e!

.

We use the well known bounds on the binary logarithm of the factorial
x(log x − 2) ≤ log(x!) and log

(
x
y

)
≤ 3y log(x/y) for the case y < x/2 that

10



derive from Stirling’s formula. Define x by 2−xn! = u. This yields

x = log(n!/u) (1)

≥ log(pdpn/2e!)− log
(

n

dpn/2e

)
− log 2 (2)

≥ log p +
⌈pn

2

⌉(
log pn/2− 2

)
− 3

⌈pn

2

⌉
log

(
n

dpn/2e

)
− 1 (3)

≥ log p +
pn

2

(
log n + log(p/2)− 3 log(2/p)− 2

)
− 1 (4)

= log p +
pn

2

(
log n− 4 log(2/p)

)
− pn− 1 (5)

= log p +
pn

2

(
log n− 4 log(1/p)− 4

)
− pn− 1 (6)

≥ − log n

6
+

pn

2

(
(1− 4/6) log(n)

)
− 3pn− 1 (7)

=
pn log n

6
− 3pn− log n

6
− 1 (8)

In (4), we omit the ceiling in the denominator of a negative term (inside
the log), only lessening the term, and omit the ceiling in a positive product.
In (7) we use the bound on p ≥ n−

1
6 yielding log(1/p) ≤ log n

6 twice.

3.2 Easy Low-Probability Bound

Now, we need to turn to the low-probability situations.

Lemma 5. Consider the random experiment of drawing a permutation, giv-
ing rise to the rank-variables x1, . . . , xn. Assume r > 1, that the set of pos-
sible permutations is given by disallowing some permutations on x1, . . . , xr,
and that all allowed permutations are equally likely. Then, for any fixed vari-
able xi, 1 ≤ i ≤ r, the probability that the successor of xi is in xr+1, . . . , xn

is (n− r + 1)/n.

Proof. Consider the experiment of first choosing the permutation of x1, . . . , xr,
and then, one by one, the relative positions of xr+1, . . . , xn in that order.
Now, the probability for xj to not become the successor (at its stage) of xi

is 1− 1/(j − 1) = (j − 2)/(j − 1). Hence, the probability that the successor
of xi remains unchanged is r−1

r · r
r+1 · · ·

n−2
n−1 ·

n−1
n = r−1

n .

Lemma 6. Assume a leaf node i of a decision tree T for Collisionn has
success probability pi for q. Then the depth di of i is at least di ≥ n−1

2

√
pi.

For pi ≤ n−
1
6 , this implies di ≥ pin log n

6 − 3pin− log n
6 − 1

11



Proof. Let Gi be the comparison graph of node i and G′ the subgraph of Gi

that consists of the non-isolated vertices R. By the depth restriction r < 2di.
Recall the definition of success probability: First we choose uniformly a

permutation π that is a linear extension of Gi. Then we uniformly choose a
vertex o from the n− 1 vertices that have a successor, i.e., that are different
from the last position. The experiment is successful if there is an edge in Gi

from o to its successor in π.
Here, three events must happen:

(1) o ∈ R

(2) the π-successor q of o is in R

(3) there is an arc from o to q in G′

No vertex can become o with probability greater than 1/(n− 1). Hence,
the probability of Event (1) is at most r/(n−1). By Lemma 5 the probability
for Event (2) is (r − 1)/n. We trivially bound the probability for Event (3)
by 1.

Hence, pi ≤ r(r−1)
(n−1)n < (2di)

2

n(n−1) . This is 2di >
√

pin(n− 1) >
√

pi(n − 1),
implying di > n−1

2

√
pi.

Now, assume pi ≤ n−
1
6 . We will show n−1

2

√
pi ≥ pn log n

6 − 3pn − 1,
which implies the statement of the lemma. To see this, we observe that
−1

2

√
p > −1, and hence it is sufficient to argue for n

2

√
p ≥ pn

(
log n

6 − 3
)
,

or equivalently 1/
√

p ≥ log n
3 − 6. To this end, we consider the function

f(n) = n
1
12 − log n

3 + 6, and argue that f(n) > 0 for all n > 0. Because for
log n ≤ 18 we certainly have f(n) > 0, and because limn→∞ f(n) = +∞, the
existence of a point x̂ with f(x̂) < 0 would imply a local minimum x > 0
with f(x) < 0. At such a local minimum we would have f ′(x) = 0, i.e.,
1/(12x

11
12 ) − 1/(3x ln 2) = 0, x

1
12 = 4/ ln 2, yielding x = (4/ ln 2)12. Now,

f(x) = (4/ ln 2)−12 log(4/ ln 2)/3+6 > 4/3
4−4 log 4/2

3 +6 = 16/3−4 log 6+
6 > 5 − 48

3 + 6 = 11 − 32/3 > 0, a contradiction that shows f(n) > 0 for
all positive n. Here we used the estimate 2/3 < ln 2 < 3/4 and log 6 < 8/3.

3.3 Expected Running Time without Collisions

If we consider the expected running time of an algorithm, even a fast algo-
rithm can have nodes at considerable depth.

12



Lemma 7. Let T be a comparison tree solving Collisionn, and S a set
of permutations. Assume an input drawn from q|S (uniform permutation
in S and uniform collision) has success probability at least p and expected
running time D for input from p|S, i.e., a uniformly chosen permutation
from S without collision. Then D ≥ pn

6 log n− 3pn− log n
6 − 1 + log |S|

n!

Proof. Every leaf i of T has success probability pi, a depth di, and a frac-
tion fi of the permutations from S that end at i. Now, by definition,
D =

∑
fi · di, and p =

∑
fi · pi.

We define two classes of nodes, the high-probability nodes H = {i | pi >

n−
1
6 }, and the remaining nodes L. Define further for these two classes the

split fH =
∑

i∈H fi, and similarly fL =
∑

i∈L fi, such that fH +fL = 1. The
restricted probabilities pH and pL, and the restricted expected running times
DL and DH are defined by fH · pH =

∑
i∈H fi · pi, fH ·DH =

∑
i∈H fi · di,

fL · pL =
∑

i∈L fi · pi, fL · DL =
∑

i∈L fi · di. These values satisfy p =
fH · pH + fL · pL, and D = fH ·DH + fL ·DL.

Define for i ∈ H the relative reach-probability by f ′i = fi/fH . Note that
the f ′i sum to 1, i.e., they form a probability distribution.

Define ai = 2−di , AH =
∑

i∈H ai, such that the values a′i = ai/aH sum
to 1 and form a probability distribution.

With this, we get

DH = −
∑
i∈H

f ′i log ai = − log aH −
∑
i∈H

f ′i log a′i (9)

≥ − log aH −
∑
i∈H

f ′i log f ′i (10)

= − log fH − log aH −
∑
i∈H

f ′i log fi (11)

≥ log−fH +
∑
i∈H

f ′i

(
pin log n

6
− 3pin−

log n

6
− 1 + log

|S|
n!

)
(12)

= − log fH +
pn

6
log n− 3pn− log n

6
− 1 + log

|S|
n!

. (13)

Where the inequality (10) is Gibbs’ inequality and the inequality (12) is
the statement of Lemma 4, together with the fact that − log aH ≥ 0.

Now, consider a node i ∈ L of T , i.e., with low probability pi ≤ n−
1
6 . By

Lemma 6 we have the depth-bound di ≥ pin
6 log n− 3pn− log n

6 − 1.

13



Using this inequality, we get

DL =
∑
i∈L

f ′i · di ≥
∑
i∈L

f ′i ·
(

pin

6
log n− 3pin−

log n

6
− 1

)
(14)

=
pLn

6
log n− 3pLn− log n

6
− 1 (15)

Now, the lemma follows by

D = fH ·DH + fL ·DL (16)

≥ (fHpH + fLpL)
(n

6
(log n− 18)

)
− log n

6
− 1 + fH log

fH |S|
n!

(17)

≥ pn

6
log n− 3pn− log n

6
− 1 + log

|S|
n!

(18)

Lemma 8. Let T be a linear decision tree solving Collisionn. Assume
that the expected running time D for uniformly chosen permutations without
collision (p) is D = n/2. Then the success probability p (for q) is bounded
by p ≤ 4/ log n.

Proof. Lemma 7 gives n/2 ≥ pn
6 log n− 3pn− log n

6 − 1. p ≤ 6(n/2 + log n
6 +

1)/n(log n− 18) < (3n + log n + 1)/n log n < 4/ log n.

Theorem 9. Assume that the linear decision tree T solves Collisionn with
success probability at least p (for q) and expected running time D (for p).
Then D = Ω(pn log n).

For a function n < t(n) < n log n Algorithm 1 runs in time O(t(n))
and achieves success probability pt = t(n)

n log t(n) ≥
t(n)

n log n . By Theorem 9, pt

requires asymptotic running time Ω( t(n)
n log nn log n) = Ω(t(n). Hence Algo-

rithm 1 is asymptotically optimal for success probability pt.

3.4 Strong Low Probability Bound for Worst-Case Time

Certainly, the lower bound on the expected running time is also lower bound
on the worst-case running time. Still, for sub-linear time algorithms the
success probability is significantly lowered by the impossibility to touch all
vertices.

14



Lemma 10. Let T be a comparison tree for Collisionn with maximal
depth r < n/2, and that input is drawn from p or q. Then there is a com-
parison tree T ′ with the same success probability, expected and worst-case
running time as T , and T ′ uses only the variables x1, . . . , x2r.

Proof. Structurally, T and T ′ are the same, they differ only in the variable
names. Rename variables (recursively from root to leafs) in a way that
any new variable (so far not part of any comparison) is changed to the
new variable with the lowest index. Now, the comparison graphs at the
corresponding nodes of T and T ′ are isomorphic and hence reached with the
same probability if input is drawn from p or q.

Lemma 11. Any comparison tree T with worst-case running time t ≤ n
has (average) success probability p ≤ pt =≤ 16t2

(n−1)2 log(2t)
.

Proof. With r = 2t, by Lemma 10 w.l.o.g. the comparison tree T solves Collisionr

in worst-case time t and success probability q, which is by Lemma 8 bound
by q ≤ 4/ log r = 4/ log(2t). Now, by the argument of Lemma 6, p =
r(r−1)
(n−1)nq ≤ 16t2

(n−1)2 log(2t)
.

For some function t(n) < n, Algorithm 1 runs in worst-case time O(t(n))
and achieves success probability t(n)2

n2 log t(n)
, by this asymptotically matching

the bound of Lemma 11.

3.5 Expected Time for Random Input with Collision

Theorem 12. Let T be a linear decision tree solving Collisionn. Assume
that the success probability for input distribution q is p < 1/4, and the
expected running time for q is Cq. Then, Cq ≥ pn

12 (log n− 18)− log n
12 − 3.

Proof. Let S be the set of permutations that have success probability > 1/2.
With fS := |S|/n! we can express running time and probability as C =
fSCS +(1−fS)CS̄ , where CS is the expected running time for permutations
in S, and CS̄ the expected running time for permutations not in S. Similarly,
we can write the success probability as p = fSpS + (1− fS)pS̄ .

For permutations not in S, half the contribution to the average running
times stems from undetected collision. Hence, it can be estimated using Cp,

by Lemma 7, we have CS̄ ≥
(

npS̄
6 (log n− 18)− log n

6 − 1 + log(1− fS)
)
/2.

By a Markov inequality, at least half of the inputs in q|S stop at times
before 2CS . Cut T at depth (time) 2CS , leading to T ′ with success prob-
ability p′S ≥ 1/4. Now, because the expected running time is less than the

15



worst-case running time of T ′, Lemma 7 yields 2CS ≥ pn
6·4(log n−18)− log n

6 −
1 + log fS .

It remains to take the weighted sums of the bounds on 2CS and 2CS̄ .
Because for p ≤ 1/4 we have n/4 ≥ pn, we get 2CS ≥ n

6 (log n−18)− log n
6 −2.

Here, the last term stems from fS log fS +(1−fS) log(fS−1) > −1, implying
the statement of the lemma.

Corollary 13. Let T be a linear decision tree solving Collisionn. Assume
that the success probability for input distribution q is p. Then the expected
running time for q is Ω(pn log n).

Acknowledgment

I would like to thank Ueli Maurer and Dominik Raub for introducing me to
the problem and for several fruitful discussions.

References

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds
for the collision and the element distinctness problems. J.
ACM, 51(4):595–605 (electronic), 2004. 2

[BDH+05] Harry Buhrman, Christoph Dürr, Mark Heiligman, Pe-
ter Høyer, Frédéric Magniez, Miklos Santha, and Ronald
de Wolf. Quantum algorithms for element distinctness.
SIAM J. Comput., 34(6):1324–1330 (electronic), 2005. 2

[BFP+73] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tar-
jan. Time bounds for selection. Journal of Computer and
System Sciences, 7:448–461, 1973. 6, 7

[BO83] M. Ben-Or. Lower bounds for algebraic computation trees.
In Proc. 15th Annual ACM Symposium on Theory of Com-
puting, pages 80–86, 1983. 2, 4

[Bop94] Ravi B. Boppana. The decision-tree complexity of element
distinctness. Inf. Process. Lett., 52(6):329–331, 1994. 2

[BT03] Graham R. Brightwell and Prasad Tetali. The number of
linear extensions of the boolean lattice. Order, 20(4):333+,
2003. 4

16



[BW91] Graham Brightwell and Peter Winkler. Counting linear ex-
tensions is #P-complete. In STOC, pages 175–181. ACM,
1991. 4

[CH80] M. Chein and M. Habib. The jump number of DAGs and
posets: An introduction. Annals of Discrete Mathematics,
9:189–194, 1980. 4

[Coo06] Joshua Cooper. Random linear extensions of grids, 2006. 4

[GKMadHS97] Dima Grigoriev, Marek Karpinski, Friedhelm Meyer auf der
Heide, and Roman Smolensky. A lower bound for random-
ized algebraic decision trees. Comput. Complexity, 6(4):357–
375, 1996/97. 3

[GSS06] J. Giesen, E. Schuberth, and M. Stojakovic. Approximate
sorting. In Proceedings of the 7th Latin American Theoretical
Informatics Symposium (LATIN), 2006. 4

[Kah02] Jeff Kahn. Entropy, independent sets and antichains: a new
approach to Dedekind’s problem. Proc. Amer. Math. Soc.,
130(2):371–378 (electronic), 2002. 4

[Mau05] Ueli M. Maurer. Abstract models of computation in cryp-
tography. In Nigel P. Smart, editor, IMA Int. Conf., vol-
ume 3796 of Lecture Notes in Computer Science, pages 1–12.
Springer, 2005. 2

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Al-
gorithms. Cambridge University Press, Cambridge, UK,
1995. 3, 8, 9

[MT82] Udi Manber and Martin Tompa. Probabilistic, nondetermin-
istic, and alternating decision trees (preliminary version). In
STOC ’82: Proceedings of the fourteenth annual ACM sym-
posium on Theory of computing, pages 234–244, New York,
NY, USA, 1982. ACM Press. 3

[MT84] Udi Manber and Martin Tompa. The effect of number of
Hamiltonian paths on the complexity of a vertex-coloring
problem. SIAM J. Comput., 13(1):109–115, 1984. 3

17



[MT85] Udi Manber and Martin Tompa. The complexity of problems
on probabilistic, nondeterministic, and alternating decision
trees. J. Assoc. Comput. Mach., 32(3):720–732, 1985. 3

[PH78] S. Pohlig and M. Hellman. An improved algorithm for com-
puting logarithms over GF (p) and its cryptographic signif-
icance (corresp.). IEEE Transactions on Information The-
ory, 24(1):106–110, Jan 1978. 2

[Sni85] Marc Snir. Lower bounds on probabilistic linear decision
trees. Theoret. Comput. Sci., 38(1):69–82, 1985. 3

[Yao77] A. C. C. Yao. Probabilistic computations: towards a unified
measure of complexity. In Proc. 18th FOCS, pages 222–227.
IEEE, 1977. 3, 8, 9

18


	Introduction
	Related Work
	Preliminaries

	The Algorithms
	Deterministic or Worst-Case Time
	Expected Time
	Randomized Algorithms
	Expected time
	Worst-case time


	The lower bound
	High-probability DAGs
	Easy Low-Probability Bound
	Expected Running Time without Collisions
	Strong Low Probability Bound for Worst-Case Time
	Expected Time for Random Input with Collision


