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Abstract

In this paper we address the problem of constructing an index for a text document or a collec-
tion of documents to answer various questions about the occurrences of a pattern when allowing
a constant number of errors. In particular, our index can be built to report all occurrences, all
positions, or all documents where a pattern occurs in time linear in the size of the query string and
the number of results. This improves over previous work where the look-up time was either not
linear or depended upon the size of the document corpus. Our data structure has size O(n logd n)
on average and with high probability for input size n and queries with up to d errors. Additionally,
we present a trade-off between query time and index complexity that achieves worst-case bounded
index size and preprocessing time with linear look-up time on average.

1 Introduction

A text index is a data structure prepared for a document or a collection of documents that facilitates
efficient queries for the occurrences of a pattern. Text indexing is becoming increasingly important.
The amount of textual data available, e.g., in the Internet or in biological databases, is tremendous and
growing. The sheer size of the textual data makes the use of indexes for efficient on-line queries vital.
On the other hand, the nature of the data frequently calls for error-tolerant methods (called approxi-
mate pattern matching): data on the Internet is often less carefully revised and contains more typos
than text published in classical media with professional editorial staff; biological data is often erro-
neous due to mistakes in its experimental generation. Moreover, in a biological context, error-tolerant
matching is useful even for immaculate data, e.g., for similarity searches. For on-line searches, where
no preprocessing of the document corpus is done, there is a variety of algorithms available for many
different error models (see, e.g., the survey [Nav01]). Recently, some progress has been made to-
wards the construction of error-tolerant text indexes [AKL+00, BGW00, CGL04], but in general the
problem remains open. In particular, currently no method with optimal look-up time—linear in the
pattern length and the number of outputs—is known. We fill this gap with our new indexing method.

When indexing a document (or a collection C of documents) of total size n and performing a
query for a pattern of length m allowing d errors, the relevant parameters are the index size, the index
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construction time, the look-up time, and the error model. Usually, the least important of these parame-
ters is the preprocessing time. Depending on the application, either size or query time dominates. We
consider output-sensitive algorithms here, i.e., the complexity of the algorithms is allowed to depend
on an additional parameter occ counting the number of outputs, e.g., occurrences of a pattern. The
natural lower bound, linear Θ(n) size (preprocessing time) and linear Θ(m + occ) look-up time, can
be reached1 for exact matching (e.g., [Wei73, McC76, Ukk95, Far97]). For edit or Hamming distance,
no index with look-up time O(m + occ) and size O(n logl n) for l = O(1) even for a small number
of errors is known. In all reasonable-size indexes the look-up time depends on n or is not linear in m.

1.1 Our Results

We present and analyze a new index structure for approximate pattern matching problems allowing a
constant number of d = O(1) errors. The method works for various problem flavors, e.g., approxi-
mate text indexing (full text indexing), approximate dictionary look-up indexing (word based index-
ing), and approximate document collection indexing (see Section 2.4). For all of these problems we
achieve an optimal worst-case look-up time of O(m + occ) employing an index that uses O(n logd n)
additional space and requires preprocessing time O(n logd+1 n), both on average and with high prob-
ability. For approximate dictionary look-up these bounds even improve to O(|C| logd |C|) additional
space and O(|C| logd+1 |C|) preprocessing time, where |C| is the number of documents in the col-
lection. Our data structure is based on a compact trie representation of the text corpus. This can
either be a compact trie, a suffix tree, or a generalized suffix tree. From this tree further error trees
are constructed (see Section 3.2). For the efficient retrieval of results, range queries are prepared on
the leaves of the trees (see Section 2.5). The average case analysis is based on properties of mixing
ergodic stationary sources which encompass a wide range of probabilistic models such as station-
ary ergodic Markov sources (see, e.g., [Szp00]). To our knowledge, this yields the first reasonable
sized indexes achieving optimal look-up time. Additionally, we present a trade-off between query
time and index complexity, achieving worst-case bounded index size O(n logd n) and preprocessing
time O(n logd+1 n) while having linear look-up time O(m + occ) on average, i.e., we can have a
worst-case bound either on the size or on the query time and an average-case bound on the other.

1.2 Related Work

A survey on text indexing is given by Navarro et al. [NBYST01]. For the related nearest neigh-
bor problem see the survey by Indyk [Ind04]. Previous results for text indexing (on a single text of
length n) are summarized in the table below. Navarro and Baeza-Yates [NBY00] present a method
with O(nε), ε < 1, average look-up time for general edit distance. A similar result is reported
by Myers [Mye94], who describes an algorithm with expected look-up time O(nε log n) for d er-
rors. In a certain range, this is also sublinear. Both algorithms require O(n) space. Another ap-
proach is taken by Chávez and Navarro [CN02]. Using a metric index they achieve a look-up time
O(m log2 n + m2 + occ) with an index of size O(n log n) with O(n log2 n) construction time, where
all complexities are achieved on average. A backtracking approach on suffix trees was proposed
by Ukkonen [Ukk93] having look-up time O(mq log q + occ) and space requirement O(mq) with
q = min{n, md+1}. This was improved by Cobbs [Cob95] to look-up time O(mq + occ) and space

1We assume a uniform cost model throughout this work.
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O(q + n). Amir et al. [AKL+00] describe an index for d = 1 and edit distance. This was later
improved by Buchsbaum et al. [BGW00] to O(n logn) index size and O(m log log n + occ) query
time. For Hamming distance, an index with O(m + occ) look-up time using O(n log n) space on av-
erage can be constructed [Now04]. This was generalized to edit distance in [MN05]. Recently, Cole
et al. [CGL04] proposed a structure allowing a constant number d of errors, which works for don’t
cares (wild cards) and edit distance (the table gives the result for edit distance). For Hamming dis-
tance the dictionary look-up problem can be solved with a compact trie with O(|C|) extra space and
O(logd+1 |C|) average look-up time [Maa04]. A somewhat different approach is taken by Gabriele
et al. [GMRS03], for a restricted Hamming distance allowing d mismatches in every window of r

characters, they describe an index that has average size O(n logl n), for some constant l and average
look-up time O(m + occ).

Errors Model Query Time Index Size Prep. Time Literature

d=0 exact O(m+occ) O(n) O(n) Weiner 1973

d=1 edit O(m log n log log n+occ) O(n log2n) O(n log2n) Amir et al. 2000

d=1 edit O(m log log n+occ) O(n log n) O(n log n) Buchsbaum et al.
2000

d=1 edit O(m+occ) O(n log n) (avg,whp) O(n log2n) (avg,whp) MN 2004

d=O(1) edit O(m+logdn log log n+occ) O(n logdn) O(n logdn) Cole et al. 2004

d=O(1) edit O(nε) O(n) O(n) Navarro et al. 2000

d=O(1) edit O(knε log n) O(n) O(n) Myers 1994

d=O(1) edit O(m log2 n+m2+occ) (avg) O(n log n) (avg) O(n log2 n) (avg) Chávez et al. 2002

d=O(1) edit O(m min{n, md+1}+occ) O(min{n, md+1}+n) O(min{n, md+1}+n) Cobbs 1995
(Ukkonen 1993)

d=O(1) Ham. O(logd+1n), (avg) O(n) O(n) M 2004

d=O(1) edit O(m+occ) O(n logdn) (avg,whp) O(n logd+1n) (avg,whp) This paper

d=O(1) edit O(m+occ), (avg,whp) O(n logdn) O(n logd+1n)

d mismatches in a
window of length
r

O(m+occ), (avg) O(n logln), (avg) O(n logln), (avg) Gabriele et. al 2003

The approach of Cole et al. [CGL04] can also be used for the approximate dictionary indexing
problem with similar complexities. Previous results on dictionary indexing only allowed one er-
ror. For approximate dictionary indexing with a set of n strings of length m, Yao and Yao [YY97]
(earlier version in [YY95]) present and analyze a data structure that achieves a query time of
O(m log log n + occ) and space O(N log m). Also for Hamming distance and dictionaries of n

strings of length m each, Brodal and Ga̧sieniec [BG96] present an algorithm based on tries that uses
similar ideas than those in [AKL+00]. Their data structure has size and preprocessing time O(N)
and supports queries with one mismatch in time O(m). Brodal and Venkatesh [BV00] analyze the
problem in a cell-probe model with word size m. The query time of their approach is O(m) using
O(N log m) space. The data structure can be constructed in randomized expected time O(Nm).

The exact version of the indexing problem are much better understood. There are myriads of
different indexing methods besides the already mentioned suffix trees. Among these, the suffix array
[MM93] is the most prominent. It is smaller in practice, can be built in linear time [KSPP03, KA03,
KS03], and allows linear time look-ups [AOK02]. Further research is aimed at indexes using only
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linear space in a bit model [FM00, GV00]. Regarding the index space, a linear lower bound has also
been proven for the exact indexing problem [DLO01].

For the approximate (i.e., error-tolerant) indexing problem the results is much scarcer. For the case
of a constant number of errors, our work together with [CGL04] and [Maa04] seems to indicate that—
compared to exact searching—an additional complexity factor of O(logd n) is inherent. However,
lower bounds for the approximate indexing problem do not seem easy to achieve. Using asymmetric
communication complexity some bounds for nearest neighbor search in the Hamming cube can be
shown [BOR99, BR00, BV02], but these do not apply to the case where a linear number (in the size
of the pattern) of probes to the index is allowed. The lower bound in [BV02] is derived from ordered
binary decision diagrams (OBDDs) and assumes that a pattern is only ever read in one direction. The
information theoretic method of [DLO01] also seems to fall short because approximate look-up does
not improve compression and there is no restriction on the look-up time.

2 Preliminaries

2.1 Strings and String Distances

Let Σ be any finite alphabet and let |Σ| denote its size. We consider |Σ| to be constant. Σ∗ is the set
of all strings including the empty string ε. Let t = t[1] · · · t[n] ∈ Σn be a string of length |t| = n.
We denote by uv (and sometimes u·v) the concatenation of the strings u and v. If t = uvw with
u, v, w ∈ Σ∗ then u is a prefix, v a substring, and w a suffix of t. We define t[i. .j] = t[i]t[i+1] · · · t[j],
prefk(t) = t[1. .k], and suffk(t) = t[k. .n] (with t[i. .j] = ε for i > j). For u, v ∈ Σ∗ we let u vpref v

denote that u = pref |u|(v). For S ⊆ Σ∗ and u ∈ Σ∗ we let u ∈pref S denote that there is v ∈ S

such that u vpref v. Let u ∈ Σ∗ be the longest common prefix of two strings v, w ∈ S. We define
maxpref(S) = |u|. The size of S is defined as

∑

u∈S |u|.
We use the well-known edit distance (Levenshtein distance [Lev65]) to measure distances between

strings. The edit distance of two strings u and v, d(u, v), is defined as the minimum number of edit
operations (deletions, insertions, and substitutions) that transform u into v. We restrict our attention
to the unweighted model, i.e., every operation is assigned a cost of one. The edit distance between two
strings u, v ∈ Σ∗ is easily computed using dynamic programming in O(|u| · |v|) using the following
recurrence:

d (u[1. .k], v[1. .l]) = min







d (u[1. .k], v[1. .l − 1]) + 1
d (u[1. .k − 1], v[1. .l]) + 1

d (u[1. .k − 1], v[1. .l − 1]) + δ̂u[k],v[l]







, (1)

where δ̂u[k],v[l] = 0 if and only if u[k] = v[l] and δ̂u[k],v[l] = 1 otherwise. Hamming distance [Ham50]
can be seen as a simplified version of edit distance. For two strings u, v ∈ Σ∗, the Hamming distance
is either infinite if the strings have different lengths, or it is defined as

dHam(u, v) =

|u|
∑

l=1

δ̂u[l],v[l] . (2)

We restrict our attention to edit distance, using Hamming distance instead would even simplify the
matter.
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2.2 Tries

For fast look-up, strings can be stored in a trie. A trie T for a set of strings S ⊂ Σ∗ is a rooted
tree with edges labeled by characters from Σ. All outgoing edges of a node are labeled by different
characters (unique branching criterion). Each path from the root to a leaf can be read as a string from
S. Let u be the string constructed from concatenating the edge labels from the root to a node x. We
define path(x) = u. The string depth of node x is defined by depth(x) = |path(x)|. The word set
of T denoted words(T ) is the set of all strings u, such that u vpref path(x) for some x ∈ T . For
a node in x ∈ T we define Tx to be the sub-trie rooted at x. Defining tailsu(S) = {v | uv ∈ S},
we can characterize the sub-trie rooted at node x with u = path(x) by Tx = T (tailsu(S)). For
convenience we also denote Tu = Tpath(x) = Tx. The string height of T is defined as height(T ) =
max{depth(x) | x is an inner node of T }; it is the same as maxpref(words(T )).

A compact trie is a trie where nodes with only one outgoing edge have been eliminated and
edges are labeled by strings from Σ+ (more precisely, they are labeled by pointers into the underlying
strings). Eliminated nodes can be represented by virtual nodes, i.e., a base node, the character of the
outgoing edge, and the length. A similar representation is used in [Ukk95], called reference pairs
(i.e., if x is a trie-node and y is the node in the compact trie representing the maximal length prefix
path(y) vpref path(x), then x can be represented by (y, u[|path(y)|+1], |path(x)|−|path(y)|)). All
previous definitions for tries apply to compact tries as well, possibly using virtual instead of existing
nodes. We only use compact tries, hence, we denote the compact trie for the string set S by T (S).

2.3 Weak Tries

For ease of representation, we consider the strings in underlying sets of any trie like data structure to
be independent and make no use of any intrinsic relations between them. A suffix tree for the string
t can also be regarded as a trie for the set S = {u|u is a suffix of t} which can be represented in size
O(|t|). The major advantage of the suffix tree is that (by using the properties of S) it can be built in
time O(|t|), while building a trie for the suffixes of t may take time O(l|t|) where l is the length of the
longest common repeated substring in t. For our index data structure, this additional cost will only be
marginal. In the following let T (S) denote the compact trie for the string set S ⊂ Σ+.

To reduce the size of our index in the worst-case, we later restrict the search to patterns with a
maximal length l. We then only need to search the tries up to the depth l. The structure from this
threshold to the leaves is not important. This concept is captured in the following definition of weak
tries.

Definition 2.1 (Weak Trie). For l > 0, the l-weak trie for a set of strings S ⊂ Σ∗ is a rooted tree
with edges labeled by characters from Σ. For any node with a depth less than l, all outgoing edges
are labeled by different characters, and there are no branching nodes with a depth of more than l.
Each path from the root to a leaf can be read as a string from S.

Up to level l, all previous definitions for (compact) tries carry over to (compact) weak tries. The
remaining branches (in comparison to a compact trie) are all at level l. By Wl(S) we denote a compact
l-weak trie for the set of strings S. Note that Wmaxpref(S)(S) = T (S). In any case, the largest depth
of a branching node in an l-weak trie is l.

Figure 1 shows examples of weak tries. The height of the trie in Figure 1(a) is three, thus the
3-weak trie is the same as the compact trie. Since maxpref(S) is the height of the trie for the string
set S, the weak trie Wmaxpref(S)(S) is just the compact trie T (S).

5



ar

ll

e

id

ll

y

ub

el
l

ck

p

to

s

0

1

2

4

6

8

9

11

12

13

16

18

20

21

(a) Compact trie
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(b) 2-Weak trie
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(c) 1-Weak trie

Figure 1: Examples of a compact trie, a 1-weak trie, and a 2-weak trie for the prefix-free set of strings
bear, bell, bid, bull, buy, sell, stock, stop.

The l-weak trie for a set S can easily be implemented in size O(|S|) by representing edge labels
with pointers into the strings of S: Each string in S generates a leaf and so there are at most O(|S|)
leaves, O(|S|) inner nodes, and O(|S|) edges.

Definition 2.1 guarantees that weak tries are unique with respect to a string set S (except for the
order of the children): Since the trie is compact, by the unique branching criterion, the nodes up to
depth l are uniquely defined through the prefixes of length l of the strings in S. Each element in S

has a prefix of length l that uniquely corresponds to a path of length l. If there is more than one string
with a certain prefix, u, then these are all represented by leaves under a node p with path(p) = u.

Up to level l, all previous definitions for (compact) tries carry over to (compact) weak tries. Weak
tries are not necessarily unique with respect to a string set S. By Wl(S) we denote an (arbitrary)
compact l-weak trie. Note that Wmaxpref(S)(S) = T (S) (since maxpref(S) is the string height of
T (S)).

2.4 Approximate Indexing Problems

Pattern matching problems come in various flavors. We focus on the case where a single pattern
P is to be found in a database consisting of a text T or a collection of texts C. The database is
considered static and can be preprocessed to allow fast dynamic, on-line queries. There appear various
definitions of approximate text indexing in the literature. The broader definition just requires the index
to “speed up searches” [NBYST01], while a stricter approach requires to answer on-line queries “in
time proportional to the pattern length and the number of occurrences” [AKL+00]. We follow the
latter approach.

Problem 2.2 (d-Approximate Text Indexing (d-ATI)). Given a text T ∈ Σ∗, preprocess T such that
upon a query for a pattern P ∈ Σ∗ we can retrieve

a. all occurrences (i, j) such that a substring T [i. .j] matches P with at most d errors (reporting
occurrences),
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b. all positions i such that a substring T [i. .j] matches P with at most d errors (reporting positions).

Problem 2.3 (d-Approximate Dictionary Indexing (d-ADI)). Given a finite collection of strings
C ⊂ Σ∗, preprocess C such that upon a query for a pattern P we can retrieve

a. all occurrences (s, 1, i), s ∈ C, such that a prefix pref i(s) matches P with at most d errors
(reporting occurrences),

b. all strings s ∈ C such that a prefix t vpref s matches P with at most d errors (reporting positions),

c. all strings s ∈ C that match P with at most d errors (reporting full hits).

Problem 2.4 (d-Approximate Document Collection Indexing (d-ADCI)). Given a finite collection
of strings C ⊂ Σ∗, preprocess C such that upon a query for a pattern P we can retrieve

a. all occurrences (s, i, j), s ∈ C, such that s[i. .j] matches P with at most d errors (reporting
occurrences),

b. all positions (s, i), s ∈ C, such that a substring s[i. .j] matches P with at most d errors (reporting
positions),

c. all strings s such that a substring s[i. .j] matches P with at most d errors (reporting documents).

To ease further exposition, we take a unified view on the three indexing categories by considering
our text database to be a set S of n strings, called the base set. We let S be either one of the following:
(i) the set of all suffixes of T for d-ATI, (ii) the collection of strings C for d-ADI, (iii) the set of all
suffixes of all strings in C for d-ADCI. Observe that in all instances in addition to the size of the
(originally) given strings a trie for the underlying collection consumes O(n) space by using pointers
into strings instead of substrings.

2.5 Range Queries

A basic tool needed for our algorithm are range queries. The following range queries are used to
efficiently select the correct occurrences of a pattern depending on the problem type.

Problem 2.5 (Bounded Value Range Query (BVRQ)). An array A of size n (indexed 1 through n)
containing integer values is to be preprocessed for answering bounded value range queries efficiently.
A BVRQ (i, j, b) asks to find all indices L ⊆ [i, j] such that the value in A is less than or equal to b,
i.e., L = {l | i ≤ l ≤ j and A[l] ≤ b}.

Problem 2.6 (Colored Range Query (CRQ)). An array A of size n (indexed 1 through n) containing
integer values is to be preprocessed for answering colored range queries efficiently. A CRQ (i, j) asks
to find the distinct set of different numbers that appear in the interval [i, j] of A, i.e., to return the set
C = {A[c] | i ≤ c ≤ j}.

The BVRQ problem can be solved with O(n) preprocessing time and space and O(|L|) query
time [Mut02], based on the well-known range minimum query (RMQ) problem which can be solved
with O(n) preprocessing and O(1) query time [GBT84]. The CRQ problem can also be solved with
O(n) preprocessing time and space and O(|C|) query time [Mut02].

7



2.6 A Closer Look at the Edit Distance

The presented algorithms work for edit distance with unit cost up to a constant number of errors d.
Any submodel of edit distance can be used as well, but we only describe the edit distance version.
To understand the basic ideas first, it might be helpful to read this chapter replacing edit distance by
Hamming distance.

Our indexing structure is based on the idea of computing certain strings which are within a speci-
fied distance to elements from our base set S or sets derived from S where the errors occur in prefixes
of a bounded length. Therefore, we have to establish close ties between the length of minimal prefixes
and the number of mismatches therein.

The following definition captures the minimal prefix length of a string u that contains all errors
with respect to a string v.

Definition 2.7 (k-Minimal Prefix Length). For two strings u, v ∈ Σ∗ with d(u, v) = k we define

minprefk,u (v)

= min
{

l
∣

∣ d
(

pref l (u), pref l+|v|−|u| (v)
)

= k and suff l+1 (u) = suff l+|v|−|u|+1 (v)
}

. (3)

Note that, for Hamming distance, minprefk,u(v) is the position of the last mismatch.
For a more detailed understanding of edit distance, it is helpful to consider the edit graph. The

edit graph for the transformation of the string u into the string v contains a vertex2 for each pair of
prefixes. An arc connects two vertices if the prefixes represented by the vertices differ by at most one
character. Each arc is labeled by a weight corresponding to equation (1), i.e., the weight is zero if and
only if the prefixes of the source vertex are both extended by the same character to form the prefixes
of the target vertex (a match). Otherwise, the weight of the arc is one, corresponding to a substitution
(diagonal arcs), a deletion (horizontal arcs), or an insertion (vertical arcs). The vertex representing
the empty prefixes is the start vertex and it is labeled with the weight zero. Each vertex in the edit
graph is labeled with the weight of a lightest (or shortest if we consider weights as distances) path
connecting it to the start vertex. The vertex representing both strings is the end vertex. Its label is
the edit distance between both strings. We call an arc relevant if it lies on a shortest path from the
start vertex to another vertex. The relevant edit graph contains only the relevant arcs. We denote the
relevant edit graph for transforming u into v by Grel

u,v. An edit path is any path in the relevant edit
graph connecting the start with the end vertex. Each path connecting the start with the end vertex
corresponds to a minimal set of edit operations to transform one string into the other.

Recall that the edit distance is defined as the minimal number of operations necessary to trans-
form a string u into another string v. It is convenient to define the operators del, ins, and sub
of type Σ ∪ {ε} → Σ ∪ {ε}. If, for two strings u, v ∈ Σ∗, we have distance d(u, v) = k,
then there exist one or more sequences of operations (op1, op2, . . . , opk), opi ∈ {del, ins, sub},
such that v = opk(opk−1(· · · op1(u) · · · )). We call u(i) = opi(· · · op1(u) · · · ) the i-th edit stage.
Each operation opi in the sequence changes the current string at a position pos (op i). An insertion
changing u = u1· · ·ui−1uiui+1· · ·um to u1· · ·ui−1aui· · ·um has position i, a deletion changing u to
u1· · ·ui−1ui+1· · ·um has position i, and a substitution changing u to u1· · ·ui−1aui+1· · ·um also has po-
sition i. We call a sequence ρ(u, v) = (op1, op2, . . . , opk) of edit operations an ordered edit sequence
if the operations are applied from left to right, i.e., for op i and opi+1 we have pos (opi) ≤ pos (opi+1)

2To avoid confusion, we call elements of the edit graph vertices and arcs and elements of the trees of our index data
structure nodes and edges.
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if opi is a deletion, and pos (op i) < pos (opi+1) otherwise. Observe that changing the order or the
operations also effects the positions in the string where the operations apply. For a fixed set of oper-
ations there is a unique order (except for swapping identical deli-operations). The charm of ordered
edit sequences lies in the fact that they transform one string into the other in a well-defined way.

Note that there may be exponentially (in the number of errors) many edit paths: Consider the
strings bam

b and ba
n
b which have distance d = n − m for n > m. There are

(

n−2
d

)

possibilities to
remove the additional as and, thus, equally many edit paths.

Lemma 2.8 (One-to-One Mapping between Paths and Edit Sequences). Let u, v ∈ Σ∗ be such
that d(u, v) = k. Each ordered edit sequence ρ(u, v) = (op1, . . . , opk) corresponds uniquely to an
edit path π = (p1, . . . , pm) in Grel

u,v.

Proof. Let π be an edit path from the start to the end vertex in the relevant edit graph. We construct an
ordered edit sequence ρ by adding one operation for each arc with non-zero weight encountered on π.
Since π has weight k, there are k non-zero arcs corresponding to k operations. Let pji

be the source
and pji+1 the target vertex of the arc corresponding to the i-th operation. Let the row and column
numbers of pji

be r and c. The path to pji
has weight i − 1, so we have d(pref c(u), prefr(v)) =

i − 1. The first i − 1 operations transform prefc(u) to prefr(v). The position of the i-th operation
is pos (opi) = r + 1, since it transforms prefc+1(u) to prefr+1(v) (a substitution), prefc+1(u) to
prefr(v) (a deletion), or prefc(u) to prefr+1(v) (an insertion). The row numbers on the path are
strictly increasing except for the case of two deletions following immediately one after another. But,
for two deletions opi and opi+1 occurring directly in a row, we have the same positions pos (op i) =
pos (opi+1). Therefore, the ordered edit sequence derived from the path is unique.

By induction on the number of operations, we show that each ordered edit sequence ρ corresponds
uniquely to a path in the relevant edit graph. The start vertex corresponds surely to the edit sequence
with no operations. Assume that we have found a unique path for the first i operations leading to
a vertex p with row and column numbers r and c in the relevant edit graph such that the weight
of its predecessor in the path is smaller than i (or p is the start vertex) and the first i operations
transform prefc(u) to prefr(v). Thus, vertex p must be labeled with the weight i which is optimal and
d(prefc(u), prefr(v)) = i. The position of the i-th operation (if i > 0) is either r for a substitution
or an insertion, or it is r + 1 for a deletion. Let the position of op i+1 be pos (opi+1) = r′ (i.e.,
we either replace or delete the r′-th character, or we insert another character in its place). Note that
r′ ≥ r + 1 because we have r′ ≥ r + 1 if opi+1 is a deletion and r′ > r (hence r′ ≥ r + 1) if
opi+1 is a substitution or an insertion. Since we have d(prefc(u), prefr(v)) = i and pos (opi+1) = r′,
the intermediate substrings must be equal: u[c. .c + r′ − 1 − r] = v[r. .r′ − 1]. Thus, we must have
zero-weight arcs from the vertex p to a vertex q with row and column numbers r ′−1 and c+r′−1−r.
The weight of q is optimal because the weight of p is optimal by induction hypothesis. The vertex
q represents the prefixes prefr′−1(v) prefc+r′−1−r(u) which have distance i. With the next operation,
the first i + 1 operations transform prefd(u) into prefs(v), where d = c + r′ − r and s = r′ − 1 for a
deletion, d = c+ r′− r and s = r′ for a substitution, or d = c+ r′− 1− r and s = r′ for an insertion.
From q there is an arc corresponding to the next operation to a vertex p′ with row and column numbers
s and d: Each arc adds at most weight one. The path to p′ is therefore optimal because the existence
of a path to p′ with less weight would prove the existence of an ordered edit sequence with fewer
operations for the two prefixes. Thus, we could transform prefd(u) into prefs(v) with less than i + 1
and suffd+1(u) into suffs+1(v) with k−i−1 operations. This, would be a contradiction to d(u, v) = k.

Note that the position of the i-th operation derived from the edit path was pos (op i) = r+1, where
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r was the row number of the source vertex of the arc representing op i in the first construction. Thus,
if the operations have positions r1 + 1, . . . , rk + 1, then the row numbers of the source vertices of
non-zero weight arcs are r1, . . . , rk. In the second construction, we derived the existence of a vertex
at the start of an arc representing the (i + 1)-th operation with row and column numbers r ′ − 1 and
c + r′ − 1− r, where r′ was the position of the (i + 1)-th operation. Thus, if the non-zero weight arcs
on the edit path start at row numbers r1, . . . , rk, then the operations have positions r1 + 1, . . . , rk + 1.
As a result, we have a one-to-one mapping.

Now, we can make the desired connection from the sequence of operations to the k-minimal prefix
lengths.

Lemma 2.9 (Edit Stages of Ordered Edit Sequences). Let u, v ∈ Σ∗ be such that d(u, v) = k.
Let ρ(u, v) = (op1, . . . , opk) be an ordered edit sequence and let u(i) = op i(· · · op1(u) · · · ) be the
i-th edit stage. If we have minpref i,u(i)(u) > h + 1, then there exists an j > h with pref j(v) =
prefj(u(i − 1)).

Proof. By Lemma 2.8, there is a unique path π(u, v) in the relevant edit graph corresponding to the
sequence ρ(u, v). The same holds for any subsequence ρi(u, u(i)) = (op1, . . . , opi). Since there are
no more operations when transforming u into u(i), the remaining path which is not identical with the
path for ρ(u, v) must be made up of zero-weight arcs. Let p be the source vertex of the arc for the
i-th operation on the edit path in the relevant edit graph Grel

u,u(i). The vertex p must have weight i − 1.
Let q be the target vertex of the arc for the (i − 1)-th operation. Up until vertex q, the edit paths in
the relevant edit graphs Grel

u,u(i) and Grel
u,u(i−1) are equal. Thus, they are equal up to vertex p because

there are only zero-weight arcs between q and p in the relevant edit graphs transforming u into u(i).
Furthermore, the same path is also found in the relevant edit graph Grel

u,v. Let the row and column
numbers of p be r and c. Thus, p represents the prefixes pref c(u) and

prefr (v) = prefr (u(i)) = prefr (u(i − 1)) . (4)

Let p′ be the next vertex in the edit path following p and let p′ have row and column numbers r′ and c′.
Since p′ has weight i, the distance between the represented prefixes is d(pref r′(u(i)), prefc′(u)) = i.
Hence, minpref i,u(i)(u) ≤ r′. Since r′ ≤ r + 1, we find that

h + 1 < minpref i,u(i) (u) ≤ r′ ≤ r + 1 , (5)

and, thus, r > h. Equations (4) and (5) prove our claim.

When looking at the edit graph, one can also see how it is possible to compute the edit distance in
time O(mk) for a pattern of length m and k errors. Since each vertical or horizontal edge increases
the number of errors by one, there can be at most k such edges in any edit path from the start to
the end vertex. Therefore, we only have to consider 2k + 1 diagonals of length m. We call this a
k-bounded computation of the edit distance (see also [Ukk85]).

3 Main Indexing Data Structure

In each of our indexing problems, in order to answer a query we have to find prefixes of strings in S

that match the search pattern w with k errors. Assume that S ⊂ Σ∗ and w ∈ Σ∗ are given. We call
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s ∈ S a k-error length-l occurrence of w if d(pref l(s), w) = k. We then also say that w matches s

up to length l with k errors. We will sometimes omit the length l if it is either clear from context or
irrelevant. To solve the indexing problems defined in Section 2.4 in optimal time, we need to be able
to find all d-error occurrences of the search pattern w in time O(|w|). For that purpose, we will define
error trees so that leaves in certain subtrees contain the possible matches. From these, we select the
desired output using range queries.

On an abstract level, the basic idea of the index for d errors is the following: A single string s ∈ S

can be compared to the pattern w to check whether w matches a prefix of s with at most d errors in
time O(d · |w|) as described in Section 2.6. On the other hand, a precomputed index of all strings
within edit distance d of S (e.g., a trie containing all strings r for which r matches a prefix of a string
s ∈ S with at most d errors) allows a linear look-up time. Both methods are relatively useless on
their own: The index would be prohibitively large while comparing the pattern to each string would
take too long. Therefore, we take a balanced approach by precomputing some of the neighboring
strings and directly computing the distance for others. In particular, we inductively define sets of
strings W0, . . . , Wd where, for 0 ≤ i ≤ d, the set Wi consists of strings with edit distance i to some
string in S. We begin with S = W0. Parameters h0, . . . , hd are used to control the precomputing.
As an example, W1 consists of all strings r = u′v such that d(r, s) = 1 for some s = uv ∈ W0 and
|u′| ≤ h0 +1, i.e., we apply all possible edit operations to strings s ∈ S that result in a modified prefix
of length h0 + 1. The partitioning into d + 1 sets allows searching with different error bounds up to d.

3.1 Intuition

The intuitive idea is as follows. If the search pattern w matches a prefix s of some string in S with no
errors, we find it in the trie T for S. If w matches s with one error, then there are two possibilities
depending on the position of the error: Either the error lies above the height h0 of the trie T , or below.
If it lies above, we find a prefix of w in the trie reaching a leaf edge. Thus, we can simply check the
single string corresponding to the leaf by a k-bounded computation of the edit distance (with k = 1)
in time O(|w|). Otherwise, the error lies below the height of the trie and is covered by precomputing.
For this case, we compute all strings r that are within distance one to a string in S such that the
position of the error is in a prefix of length h0 + 1 of r. At each position we can make at most 2|Σ|
errors (|Σ| insertions, |Σ| − 1 substitutions, one deletion). Thus, for each string S we generate O(h0)
new strings (remember that we consider |Σ| to be constant). The new strings are inserted in a trie T ′

with height h1. For the second case, we find all matches of w in the subtree T ′
w.3

We extend this scheme to two errors as follows. Assume w matches a prefix s ∈pref S of a string
in the base set with two errors. There are three cases depending on the positions of the errors (of an
ordered edit script). If the first error occurs above the height h0 of the trie T , then we find a prefix
of w in T leading to a leaf edge. Again, we can check the single string corresponding to this edge in
time O(|w|) as above. If the first error occurs below the height h0 + 1, then we have inserted a string
r into the trie T ′ that reflects this first error. We are left with two cases: Either the second error occurs
above the height h1 of T ′ or below. In the first case, there is a leaf representing a single string4 which
we can check in time O(|w|) as above. Finally, for the case that the second error occurs below h1, we
generate O(h1) new strings for each string in T ′ in the same manner as before. The new strings are

3Note, though, that some leaves in T ′

w may not be one error matches of w because the error may be after the position
|w|. We will employ range queries to select the correct subset of leaves.

4We have to relax this later so that a leaf in the trie for i errors might represent 2i + 1 strings.
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inserted in a trie T ′′ with height h2. Again, we find all matches of w in the subtree T ′′
w .

The idea can be carried on to any (constant) number of errors d, each time making a case distinc-
tion on the position of the next error.

3.2 Definition of the Basic Data Structure

We now rigidly lay out the idea. There are some more obstacles that we have to overcome when
generating new strings from a set Wi: We have to avoid generating a string by doing a reverse error,
i.e., undoing an error from a previous step. Also, to ease representation, we allow all errors on prefixes
of strings that lead to a new prefix of maximal length hi−1 + 1. This, in particular, also captures all
operations with positions up to hi−1 + 1. (See the proof of Lemma 2.8: The position of an operation
corresponds to one plus the row number of the source vertex in the edit graph. The resulting string
has length at most one plus this row number.) The key property of the following inductively defined
sets W0, . . . , Wd is that we have at least one error before h0 + 1, two errors before h1 + 1, and so on
until we have d errors before hd−1 + 1 in Wd.

Definition 3.1 (Error Sets). For 0 ≤ i ≤ d, the error set Wi is defined inductively. The first error set
W0 is defined by W0 = S. The other sets are defined by the recursive equation

Wi = Γhi−1
(Wi−1) ∩ Si , (6)

where Γl is an operator on sets of strings defined for A ⊂ Σ∗ by

Γl = {op(u)v | uv ∈ A, |op(u)| ≤ l + 1, op ∈ {del, ins, sub}} , (7)

the set Si is defined as

Si = {r | there exists s ∈ S such that d (s, r) = i} (8)

(i.e., the strings that are within distance i of the string in S), and hi are integer parameters (that may
depend on Wi).

We say that r ∈ Wi stems from s ∈ S if r = opi(· · · op1(s) · · · ). If the base set S contains
suffixes of a string u, then the same string r ∈ Wi may stem from multiple strings s, t ∈ S. For
example, if we have t = av and s = v, then bs has distance one to both, t and s. When generating
Wi from Wi−1 it is therefore necessary to eliminate duplicates. On the other hand, we do not want
to eliminate duplicates generated from independent strings. Therefore, we introduce sentinels and
extend the distance function d. Each string is appended with a different sentinel, and the distance
function is extended in such a way that the cost of applying an operation to a sentinel is at least
2d + 1. To avoid the introduction of a sentinel for each string, we can even use logical sentinels:
We define the distance between the sentinel and itself to be either zero if the sentinels come from the
same string, or to be at least 2d + 1 if the sentinels come from two different strings.

With the scheme we just described, we can eliminate duplicates by finding all those newly gen-
erated strings t and s that stem from the same string or from different suffixes of the same string
u ∈ Wi−1, have the same length, and a common prefix. The following property will be useful to
devise an efficient algorithm in the next section.
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Lemma 3.2 (Error Positions in Error Sets). Assume that the string r ∈ Wi stems from the string
u ∈ S by a sequence of operations op1, . . . , opi. If the parameters hi are strictly increasing for
0 ≤ i ≤ d, then suffhi−1+2(r) = suffhi−1+2(u) and suffhi+1(r) = suffhi+1(u).

Proof. We claim that any changed, inserted, or deleted character in r occurs in a prefix of length
hi−1 + 1 ≤ hi of r. By assumption, r = op i(· · · op1(u) · · · ). Let r(j) = opj(· · · op1(u) · · · ) be the
edit stages. In the j-th step, the position of the applied operation is pos (op j), thus opj has changed, or
inserted the pos (opj)-th character in string r(j) or deleted a character from position pos (opj) of the
string r(j − 1). We denote this position by pj (for r(j − 1) we have pj = pos (opj), but the position
changes with respect to later stages). Consecutive operations may influence pj , i.e., a deletion can
decrease and an insertion increase pj from r(j) to r(j + 1) by one. Thus, after i − j operations,
pj ≤ pos (opj) + i − j. By Definition 3.1, we have pos (opj) ≤ hj−1 + 1. Therefore, in step i,
pj ≤ hj−1 + 1 + i − j. Since the hi are strictly increasing, we have hj−1 + 1 ≤ hj ≤ hj+1 − 1 ≤
· · · ≤ hi−1 +1− i+ j ≤ hi − i+ j. As a result, for any position in r, where a character was changed,
we have pj ≤ hi−1 + 1 ≤ hi.

To search the error sets efficiently, and to facilitate the elimination of duplicates, we use weak
tries, which we call error trees.

Definition 3.3 (Error Trees). The i-th error tree eti(S) is defined as the weak trie Whi
(Wi).

Each leaf p of eti(S) is labeled (id s, l), for each s ∈ S where id s is an identifier for s and
l = minpref i,path(p)(s).

To capture the intuition first, it is easier to assume that we set hi = maxpref(Wi), i.e., the maximal
length of a common prefix of any two strings in Wi. For this case the error trees become compact
tries.

A leaf may be labeled multiple times if it represents different strings in S (but only once per
string). For i errors, the number of suffixes of a string t that may be represented by a leaf p is bounded
by 2i + 1: The leaf p represents a path path(p) = u and any string matching u with i errors has to
have a length between |u| − i and |u| + i. We assumed that i ≤ d is constant, thus a leaf has at most
constantly many labels. The labels can easily be computed while eliminating duplicates during the
generation of the set Wi.

3.3 Construction and Size

To allow d errors, we build the d + 1 error trees et0(S), . . . , etd(S). We start constructing the trees
from the given base set S. Each element r ∈ Wi is implemented by a reference to a string s ∈ S

and an annotation of an ordered edit sequence that transfers u = pref l+|s−|r||(s) into v = pref l(r)
for l = minpref i,r(s). The i-th error set is implicitly represented by the i-th error tree. We build the
i-th error tree by generating new strings with one additional error from strings in Wi−1. Since we
annotated an ordered edit sequence to each string, we can easily avoid to undo a previous operation
with the new one. The details are given in the next lemma.

Lemma 3.4 (Construction and Size of Wi and eti(S)). For 0 ≤ i ≤ d, assume that the parameters
hi are strictly increasing, i.e., hi > hi−1, and let ni = |Wi−1|. The set Wi can be constructed from the
set Wi−1 in time O(ni−1hi−1hi) and space O(ni−1hi−1) yielding the error tree eti(S) as a byproduct.
The i-th error tree eti(S) has size O(|S|h0 · · ·hi−1).
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Proof. We first prove the space bound. For each string r in Wi, there exists at least one string r′

in Wi−1 such that r = op(r′) for some edit operation. For string r′ in Wi−1 there can be at most
2|Σ|(hi−1 + 2) strings in Wi: Set u′ = prefhi−1+1(r

′), then we can apply at most |Σ|(hi−1 + 1)
insertions, (|Σ| − 1)(hi−1 + 1) substitutions, and (hi−1 + 2) deletions. Hence, |Wi| ≤ 2|Σ|(hi−1 +
2)|Wi−1|.

Let W ′
i be the multi-set of all strings constructed from Wi−1 by applying all possible edit opera-

tions that result in modified prefixes of length hi−1+1. We have to avoid undoing an earlier operation.
This can be done by comparing the new operation with the annotated edit sequence. Note that we may
construct the same string from multiple edit sequences (also including the ordered edit sequence). To
construct Wi from W ′

i , we have to eliminate the duplicates.
By Lemma 3.2, if the string r ∈ W ′

i stems from the string u ∈ S, then suffhi+1(r) = suffhi+1(u).
If r, s ∈ W ′

i are equal, then they must either stem both from the same string u ∈ S, or they are
both suffixes of the same string u. Since there are no errors after hi, suffhi+1(r) = suffhi+1(s) =
suffhi+1(u). Note that hi + 1− i ≤ |suffhi+1(u)| ≤ hi + 1+ i, so there can be at most 2i +1 different
suffixes for any string u.

To eliminate duplicates, we build an hi-weak trie by naively inserting all strings from W ′
i . Let n be

the number of independent strings that were used to build the base set S, i.e., all suffixes of one string
count for one. Obviously, n ≤ |S|. We create n · (2d + 1) buckets and sort all leaves hanging from
a node p into these in linear time. All leaves in one bucket represent the same string. For suffixes,
we select one leaf and all different labels thereby also determining the k-minimal prefix length. For
buckets of other strings we just select the one leaf with the label representing the k-minimal prefix.
After eliminating the surplus leaves, the weak trie becomes eti(S).

Building the hi-weak trie for W ′
i takes time O(hi|W

′
i |) = O(ni−1hi−1hi), and eliminating the

duplicates can be done in time linear in the number of strings in W ′
i .

The size of the i-th error tree is linear in the number of leaf labels and thus bounded by the size of
Wi. Iterating |Wi| = O(hi−1|Wi−1|) leads to O(|S|h0 · · ·hi−1).

We choose the parameters hi either as hi = maxpref(Wi) or as hi = h + i for some fixed value
h that we specify later. By both choices we satisfy the assumptions of Lemma 3.4 as shown by the
following lemma.

Lemma 3.5 (Increasing Common Prefix of Error Sets). For 0 ≤ i ≤ d, let hi = maxpref(Wi) be
the maximal prefix of any two strings in the i-th error set, then hi > hi−1.

Proof. We prove by induction. Let r and s be two strings in Wi−1 with a maximal prefix prefhi−1
(r) =

prefhi−1
(s) = u for some u ∈ Σhi−1 . Since r and s are not identical, we have r = uav and s = ubv ′

for some strings v, v′ ∈ Σ∗ and a, b ∈ Σ. We have |Σ| ≤ 2, therefore, Γ(Wi−1) contains at least
ubv, uaav, ubav, uv, uav′, uabv′, ubbv′, and uv′. By Lemma 3.2, for any string r ∈ Wi−1 that stems
from t ∈ S, we have suffhi−1+1(r) = suffhi−1+1(t), thus no character at a position greater or equal to
hi−1 + 1 can have been changed by a previous operation. Thus, applying any operation at hi−1 + 1
creates a new string that has distance i to some string in S. Both ubav and ubbv ′ were created by
inserting a character at hi−1 + 1, so they do not undo an operation and belong to Wi. They both have
a common prefix of length at least hi−1 + 1 > hi−1. Thus, we find that hi > hi−1.

For hi = maxpref(Wi) we do not need to use the buckets as described in the proof of Lemma 3.4
but we can create the error trees more easily. By assumption, two strings are either completely identi-
cal, or they have a common prefix of size at most hi. On the other hand, no two strings have a common
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prefix of more than hi, thus there can be at most one bucket below hi anyway. If two strings r and s

are identical, they must stem from suffixes of the same string u ∈ S and the suffixes suffhi+1
(r) and

suffhi+1
(s) must be equal. Since s and r are implemented by pointers to strings in S we can easily

check whether they reference the same suffix of the same string during the process of insertion and
before comparing at a character level or not.

3.4 Main Properties of the Data Structure

The sequence of sets Wi simulates the successive application of d edit operations on strings of S,
where the position of the i-th operation is limited to be smaller than hi−1 + 1. Before describing the
search algorithms, we take a look at some key properties of the error sets that show the correctness of
our approach.

Lemma 3.6 (Existence of Matches). Let w ∈ Σ∗, s ∈ S, and t vpref s be such that d(w, t) = i.
Let ρ(w, t) be an ordered edit sequence for w = op i(· · ·op1(t) · · · ). For 0 ≤ j ≤ i, let t(j) =
opj(· · ·op1(t) · · · ) be the j-th edit stage. If for all 1 ≤ j ≤ i we have

minprefj,t(j) (t) ≤ hj−1 + 1 , (9)

then there exists a string r ∈ Wi with

w vpref r, r = opi(· · ·op1(s) · · · ), and l = minpref i,r (s) . (10)

Proof. We prove by induction on i. For i = 0, W0 = S and the claim is obviously true since
w = t vpref s in that case.

Assume the claim is true for all j ≤ i−1. Let r = op i(· · · op1(s) · · · ). Since d(r, s) = i, we have
to show that there exist r′ ∈ Wi−1 and strings u, u′, v ∈ Σ∗, with r = uv, r′ = u′v, d(u, u′) = 1, and
|u′| ≤ hi−1 + 1. Then r ∈ Wi by Definition 3.1.

Set l = minpref i,r(s). Since w and t are prefixes of r and s which already have distance i, we
have l = minpref i,w(t) and l ≤ hi−1 + 1 by equation (9). Set u = pref l+|s|−|r|(s), u′ = pref l(r), and
v = suff l+1(r). By Definition 2.7, r = u′v, s = uv, d(u, u′) = i, and u′ = opi(· · ·op1(u) · · · ). Set
u′′ = opi−1(· · ·op1(u) · · · ) and r′ = u′′v, then r′ = opi−1(· · ·op1(s) · · · ). We are finished if we can
show that r′ ∈ Wi−1 because |u′| = l ≤ hi−1 + 1 and d(u′, u′′) = 1.

Let w′ = opi−1(· · · op1(t) · · · ), then d(w′, t) = i − 1. Since for all 1 ≤ j ≤ i − 1, we have
minprefj,t(j)(t) ≤ hj−1 + 1 we can apply the induction hypothesis and find that there exists a string
r̂ = opi−1(· · · op1(s) · · · ) in Wi−1 with w′ vpref r̂ and l′ = minpref i−1,r̂(s). Since r̂ = r′ this proves
our claim.

When we translate this to error trees, we find that, given a pattern w, the i-error length-l occurrence
s of w corresponding to a leaf labeled by (id s, l) can be found in eti(S)w. Unfortunately, not all
leaves in a subtree represent such an occurrence. The following lemma gives a criterion for selecting
the leaves (the errors must appear before w, i.e., if l ≤ |w|).

Lemma 3.7 (Occurrences Leading to Matches). For r ∈ Wi, let w vpref r be some prefix of r and
let s ∈ S be a string corresponding to r such that l = minpref i,r(s). There exists a prefix t vpref s

such that d(t, w) = i and suff |w|+1(r) = suff |t|+1(s) if and only if |w| ≥ l.
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Proof. If |w| ≥ l, then there are strings u, v ∈ Σ∗ with w = uv and u = pref l(w). Since w is a
prefix of r, r = wx = uvx. By Definition 2.7, there also exists a prefix u′ vpref s with s = u′vx and
d(u′, u) = i. Hence, t = u′v vpref s, d(w, t) = d(uv, u′v) = i, and x = suff |w|+1(r) = suff |t|+1(s).

Conversely, assume that |w| < l and there exists a prefix t vpref s with d(t, w) = i and
suff |w|+1(r) = suff |t|+1(s). Set m = |w| and recall that w = prefm(r). Then s = t·suff |w|+1(r)
and, thus, t = pref |s|−|r|+m(s). Then d(prefm(r), prefm+|s|−|r|(s)) = i and suffm+1(r) =
suffm+1+|s|−|r|(s), i.e., m is a candidate for minpref i,r(s), which is a contradiction to m < l.

In the error tree, this means that we have an i-error occurrence of w for a leaf p in eti(S)w with
path path(p) = r if and only if p is labeled (id s, l) with |w| ≥ l. Finally, there is a dichotomy which
directly implies an efficient search algorithm.

Lemma 3.8 (Occurrence Properties). Assume w matches t vpref s for s ∈ S with i er-
rors, i.e., d(w, t) = i. Let ρ = (op1, . . . , opi) be an ordered edit sequence such that w =
opi(opi−1(· · · op1(t) · · · )). There are two mutually exclusive cases,

1. either w ∈pref Wi, or

2. there exists at least one 0 ≤ j ≤ i, such that we find r ∈ Wj with r = opj(· · · op1(s) · · · ) and
for some w′ vpref r we have w′ = pref l(w) for some l > hj .

Proof. Set t(j) = opj(· · ·op1(t) · · · ). Assume that there exists no j such that minpref j,t(j)(t) >

hj−1 + 1. Then w ∈pref Wi by Lemma 3.6.
Otherwise, let j be the smallest index such that minpref j+1,t(j+1)(t) > hj + 1. By Lemma 3.6,

there exists a string r ∈ Wj with t(j) vpref r. By Lemma 2.9, there exists a prefix w′ = pref l(w) =
pref l(t(j)) with l > hj , thus w′ vpref r.

When searching for a pattern w, assume that either hi > maxpref(Wi) or |w| ≤ hi for all i. The
last lemma applied to error trees shows that if w matches a string t vpref s for some s ∈ S with
exactly i errors, then the following dichotomy occurs.

Case A Either w can be matched completely in the i-th error tree eti(S) and a leaf p labeled (id s, l)
can be found in eti(S)w.

Case B Or a prefix w′ vpref w of length |w′| > hj is found in etj(S) and etj(S)
w′ contains a leaf p

with label (id s, l).

3.5 Search Algorithms

Lemmas 3.7 and 3.8 directly imply a search algorithm along the case distinction made above. Recall
that we can build the index efficiently if we choose the parameters hi either as hi = maxpref(Wi) or
as hi = h + i for some fixed value h. The index supports searches if either hi = maxpref(Wi) or the
length of the search pattern w is bounded by |w| ≤ h. For these parameters, we can check all prefixes
t ∈pref S for which Case B applies in time O(|w|): If |w| ≤ h, then we can never have |w ′| > hi for
a prefix w′ vpref w and so the case never applies. Otherwise, we have hi = maxpref(Wi). In this
case, the error trees become tries and so there is at most one leaf in eti(S)w′ if the length of the prefix
w′ vpref w is greater than hi. Each leaf can have at most 2d+1 labels corresponding to at most 2d+1
strings from S. We compute the edit distance of w to every prefix of each strings in time O(|w|) with
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a d-bounded computation of the edit distance (see Section 2.6). There can by at most 2d + 1 prefixes
that match w, thus, from all d + 1 error trees, we have at most d(2d + 1)2 strings in total for which
we must check the problem specific conditions for reporting them. As a result, we get the following
lemma.

Lemma 3.9 (Search Time for Case B). If d is constant and either hi = maxpref(Wi) or the length
of the search pattern w is bounded by |w| ≤ h ≤ mini hi, then the total search time spent for Case B
is O(|w|).

Case A is more difficult because we have to avoid reporting occurrences multiple times. A string
with errors above |w| can occur multiple times in eti(S)w. Since any string t matching the pattern w

with d or less errors has length |w| − d ≤ |t| ≤ |w| + d, we can eliminate duplicate reports using
|S|(2d + 1) buckets if necessary. The main issue is to restrict the number of reported elements for
each error tree i. If we can ensure that no output candidate is reported twice in each error tree, then
the total work for reporting the outputs is linear in the number of outputs.

The strings in the base set S can be either independent or they are suffixes of a string u (also
called document). Recalling the definition for the base set made in Section 2.4, we have to support
four different types of selections:

1. For the version (a) of problems d-ATI, d-ADI, and d-ADCI we want to report each prefix t of
any string s ∈ S that matches the pattern w with at most d errors.

2. For the version (b) of problems d-ATI, d-ADI, and d-ADCI we want to report each string s ∈ S

for which a prefix t vpref s matches the pattern w with at most d errors.

3. For the version (c) of problem d-ADI we want to report each string s ∈ S which matches the
pattern w with at most d errors.

4. For the version (c) of problem d-ADCI we want to report each document u if a prefix t vpref s

of a suffix s ∈ S of u matches the pattern w with at most d errors.

The basic task is to match the pattern in each of the d+1 error trees. If the complete pattern could
be matched, we are in Case A. To support the selection of the different types, we create additional
arrays for each error tree. Let ni be the number of leaf labels in the i-th error tree eti(S). First,
we create an array Ai of size ni that contains each leaf label and a pointer to its leaf in the order
encountered by a depth first traversal of the error tree. For example, if the weak tree in Figure 1(c)
were an error tree, we would first store the labels of the node 4, then all labels of the node 6, and so
on until we have stored all labels node 21 at the end of Ai. The order of the depth first traversal can
be arbitrary but must be fixed. Each node p of the error tree is annotated by the leftmost index left(p)
and the rightmost index right(p) in Ai containing a leaf label from the subtree rooted under p. For a
virtual node q, left(q) and right(q) are taken from the next non-virtual node below q.

To support the selection of results, we create an additional array Bi of the same size. Depending on
the type, Bi contains an integer value used to select the corresponding leaf label using range minimum
queries.

By Lemma 3.7, for reports of Type 1, we have to select the strings corresponding to those labels
for which the minimal prefix value l stored in the label is smaller than the length of the pattern. This
is achieved by setting Bi[j] to l if Ai[j] contains the leaf label (id s, l). Let p be the (virtual) node
corresponding to the location of the pattern w in the error tree eti(S). A bounded value range (BVR)
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query (left(p), right(p)) with bound |w| on Bi yields the indices of labels in Ai for which l ≤ |w| in
linear time in the number of labels.

For the reports of Type 2, we just have to select the strings corresponding to matches. Observe
that for any label (id s, l) found in the subtree eti(S)w there is a prefix of s that matches w with at
most i errors. Hence, we simply store in Bi[j] an identifier for the string s if (id s, l) is stored in Ai[j].
Let again p be the (virtual) node corresponding to the location of the pattern w in the error tree eti(S).
A colored range (CR) query (left(p), right(p)) on Bi yields the different string identifiers found in
eti(S)w.

The reports of Type 3 require the complete string to be matched by the pattern w. We have to take
care of sentinels that we have added to the strings in S. Let p be the (virtual) node corresponding
to the location of the pattern w in the error tree eti(S). Since we added a different sentinel for each
string in S, there is a match only if there is an outgoing edge labeled by a sentinel at p, and there is
one such outgoing edge for each different string in S. Thus, we can report the matches directly from
the error tree.

Finally, for reports of Type 4, we want to report the documents of which the strings in S are
suffixes of. For this case, the string identifiers must contain a document number and we use the same
approach as for Type 2, just storing document numbers in Bi.

Lemma 3.10 (Search Time for Case A). If d is constant, we report occ outputs, and either hi =
maxpref(Wi), or the length of the search pattern w is bounded by |w| ≤ h ≤ mini hi, then the total
search time spent for Case A is O(|w|+ occ).

Proof. Matching the pattern w in each of the d error trees takes time O(|w|) because we never reach
the part of the weak tries where the unique branching criterion does not hold. Thus, we find a single
(virtual) node representing w. The range queries (or the tree traversal for Type 3) are performed in
linear time in the number of outputs occ. Each output is generated at most d+1 times. Therefore, the
total time is O(|w|+ occ).

For the space we have the following obvious lemma.

Lemma 3.11 (Additional Preprocessing Time and Space for Case A). The additional space and
time needed for the range queries and the arrays for solving Case A is linear in the number of leaves
of the errors trees.

Proof. There are at most 2d + 1 labels per leaf and so the size of the arrays generated is linear in
the number of leaves. The time needed for the depth first traversals is also linear in the array sizes.
Finally, the range queries are also prepared in time and space linear in the size of the arrays (see
Section 2.5).

4 Worst-Case Optimal Search-Time

When setting hi to maxpref(Wi), our main indexing data structure already yields worst-case optimal
search-time by Lemmas 3.9 and 3.10. What is left is to determine the size of the data structure and the
time needed for preprocessing. Note that already for i = 0, h0 = maxpref(W0) = maxpref(S) can
be of size Ω(n) if S is the set of suffixes of a string of length n. For independent strings, the worst-
case size of h0 = maxpref(S) cannot be bounded at all in terms of n = |S|. Fortunately, the average
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size is much better and it occurs with high probability. In this section we derive the corresponding
average-case bounds for hi = maxpref(Wi). Together with Lemmas 3.4 and 3.11, this gives a bound
on the total size and preprocessing time because they are all dominated by the size and preprocessing
time needed for the d-th error tree:

Corollary 4.1 (Data Structure Size and Preprocessing Time). Let n be the number of strings in the
base set S. For constant d, the total size of the main data structures used is O(n · h0 · h1 · · · · hd−1)
and the time for preprocessing is O(n · h0 · h1 · · · · hd−1 · hd).

We show that, under the mixing model for stationary ergodic sources, the probability that hi

deviates significantly from c log n is exponentially small. Using this bound, we can also show that the
expected value of hi is O(logn).

Let {Xk}k≥1 be a random sequence generated by a stationary and ergodic source. For n < m, let
F

m
n be the σ-field generated by {Xk}

m
k=n with 1 ≤ n ≤ m. The source satisfies the mixing condition

if there exist positive constants c1, c2 ∈ IR and d ∈ IN such that for all 1 ≤ m ≤ m + d ≤ n and for
all A ∈ F

m
1 , B ∈ F

n
m+d, the inequality

c1Pr {A}Pr {B} ≤ Pr {A ∩ B} ≤ c2Pr {A}Pr {B} (11)

holds. Note that this model encompasses the memoryless model and stationary and ergodic Markov
chains. Under this model, the following limit (the Rény entropy of second order) exists

r2 = lim
n→∞

− ln
(
∑

w∈Σn (Pr {w})2)

2n
, (12)

which can be proven by using sub-additivity [Pit85].
If hi = maxpref(Wi) is greater than l, there must be two different string s and r in Wi such that

pref l(s) = pref l(r). We first prove that this implies the existence of an exact match between two
substrings of length Ω( l

i
) of strings in S, then we bound the probability for this event. Note that, if S

contains all suffixes of a string v, then S also contains v itself.

Lemma 4.2 (Length of Common or Repeated Substrings). Let W0, . . . , Wd be the error sets by
Definition 3.1. If there exists an i with hi ≥ (2i + 1)l for l > 1, then there exists a string v of length
|v| > l such that either v is a substring of two independent strings in S, or v = u[j. .j + l − 1] =
u[j ′. .j ′ + l − 1] with j 6= j ′ for some u ∈ S. Furthermore, for l ≥ 2, both occurrences of v start in a
prefix of length 2il of strings in S.

Proof. We prove the claim by induction over i. For i = 0, the claim is naturally true because h0 is the
length of the longest prefix between two strings in S. This is either the longest repeated substring in
a string u (if all suffixes of u were inserted into S), or the longest common prefix of two independent
strings.

For the induction step, assume that for all j < i we have hj < (2j+1)l and that hi ≥ (2i+1)l. Let
r, s ∈ Wi be two strings with a common prefix v of length |v| = hi ≥ (2i+1)l, thus v = pref |v|(r) =

pref |v|(s). Let t(r), t(s) ∈ S be the elements from the base set corresponding to r and s, i.e., d(t(r), r) =

i and d(t(s), s) = i. Recall that, by Lemmas 3.2 and 3.5, suffhi−1+2(r) = suffhi−1+2(t) if r ∈ Wi

stems from t ∈ S. It follows that t(r) and t(s) share the same substring w = t(r)[hi−1 + 2. .hi] =
t(s)[hi−1 + 2. .hi] of length |w| = hi−hi−1−2+1 > (2i+1)l−(2(i−1)+1)l−1 = 2l−1. Even if t(r)
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and t(s) are the same string u or suffixes of the same string u, then w cannot start at the same position
in u: Assume for contradiction that w = t(r)[hi−1 + 2. .hi] = t(s)[hi−1 + 2. .hi] = u[k. .k + |w|], then
suffhi−1+2(t

(r)) = suffk(u) = suffhi−1+2(t
(s)), so r and s do not branch at hi. This is a contradiction.

The last claim follows from w = t(r)[hi−1 + 2. .hi] and hi−1 ≤ (2i − 1)l. Thus, w starts before
(2i − 1)l + 2 ≤ 2il for l ≥ 2 in t(r) and likewise for t(r).

For the analysis, we assume the mixing model introduced above. The intuition for the next the-
orem is as follows. The height of (compact) tries and suffix trees is bounded by O(log n) where n

is the cardinality of the input set for tries or the size of the string for suffix trees (see, e.g., [AS92]
or [Szp00]). When allowing an error on prefixes bounded by the height, we essentially rejoin some
strings that were already branching. So the same process can take place again with the rejoined
strings. Thus, the height of the i-th error tree should behave no worse than i times the height of the
trie or the suffix tree. Although this bound may not be very tight, we prove exactly along this intuition.
We conjecture that in practice, the heights behave much better.

Theorem 4.3 (Average Data Structure Size and Preprocessing Time). Let n be the number of
strings in the base set S which contains strings and suffixes of strings generated independently and
identically distributed at random by a stationary ergodic source satisfying the mixing condition. For
any constant d, the average total size of the data structures is O(n logd n) and the average time for
preprocessing is O(n logd+1 n). Furthermore, these complexities are achieved with high probability
1 − o(n−ε) (for some ε > 0).

Proof. By Lemma 4.2, if there exists an i such that hi ≥ (2i + 1)l, then we find a string v of length
|v| ≥ l that is a repeated substring of an independent string or a common substring of two independent
strings. Let hrep be the maximal length of any repeated substring in a single independent string in S,
let hsuf be the maximal length of any repeated substring of a string u for which we have inserted all
suffixes into S, and let hcom be the maximal length of any common substring of two independent
strings. If we bound hrep, hsuf, and hcom by l, we also bound hi by (2i + 1)l. We first turn to long
substrings common to independent strings.

For two independent strings r and s, let Ci,j = max{k | r[i. .i + k − 1] = s[j. .j + k − 1}]
be the length of a maximal common substring at positions i and j of the two different strings.
By the stationarity of the source Pr{Ci,j ≥ l} = Pr{C1,1 ≥ l}. The latter is the probability that
r and s start with the same string of length l, thus Pr{C1,1 ≥ l} =

∑

w∈Σl(Pr{w})2 = E[wl].
For stationary and ergodic sources satisfying the mixing condition, by equation (12), we have
E[wl] =

∑

w∈Σl(Pr{w})2 → e−2r2l for l → ∞. By Lemma 4.2, the common substrings must be
found in prefixes of length 2il of a string in S. As a result, we find

Pr {hcom ≥ l} ≤ Pr

{

⋃

r,s∈S,1≤i,j≤2il

{Ci,j ≥ l}

}

≤
∑

r,s∈S,1≤i,j≤2il

Pr {Ci,j ≥ l} =
∑

r,s∈S,1≤i,j≤2il

E
[

wl
]

≤ 4n2l2i2E
[

wl
]

≤ cn2l2i2e−2r2l , (13)

for some constant c and growing l.
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For the maximal lengths hrep and hsuf of repeated substrings, we use known results from [Szp93],
where the length h(m) of a repeated substring in a string of length m is bounded by

Pr
{

h(m) ≥ l
}

≤ c′m
(

l
√

E [wl] + mE
[

wl
]

)

≤ cmle−r2l (14)

for some constant c and growing l > lnm
r2

. Because m ≤ 2il for hrep and m ≤ |S| = n for hsuf, we
can bound

Pr {hrep ≥ l} ≤ cil2e−r2l , (15)

and

Pr
{

hsuf ≥ l
}

≤ cnle−r2l . (16)

Since hi ≤ (2i + 1) max{hrep, hsuf, hcom}, we find that

Pr {hi ≥ l} ≤ Pr

{

max{hrep, hsuf, hcom} ≥
l

2i + 1

}

≤ Pr

{

hrep ≥
l

2i + 1

}

+ Pr

{

hsuf ≥
l

2i + 1

}

+ Pr

{

hcom ≥
l

2i + 1

}

≤ c1
il2

(2i + 1)2
e−r2

l

2i+1 + c2n
l

2i + 1
e−r2

l

2i+1 + c3n
2l2i2e−2r2

l

2i+1

≤ cn2l2i2e−r2
l

2i+1 , (17)

for some constant c and l > lnn
r2

. We condition on l = (1 + ε)2(2i + 1) lnn
r2

and get

Pr

{

hi ≥ (1 + ε)2(2i + 1)
lnn

r2

}

≤ c(1 + ε)2i4 ln2 n−2εn , (18)

for some constant c. Thus, with high probability 1 − o(n−ε) we have hi = O(log n). The expected
case can be bounded by

E [hi] ≤ (1 − o(n−ε))c log n + c′
∑

l≥(1+ε)2(2i+1) ln n

r2

n2l3i2e−r2
l

2i+1

≤ c log n + c′
∑

l≥0

n−2ε

(

l + (1 + ε)2(2i + 1)
lnn

r2

)3

i2e−r2
l

2i+1

≤ c log n + c′′i5n−2ε ln3 n
∑

l≥0

l3e−r2
l

2i+1

= O (log n) , (19)

since
∑

l≥0 l3e−r2
l

2i+1 is convergent. Thus, the expected size of hi is O(log n).
This proves the theorem, since hi < hj for all i ≤ j. This suffices to bound the preprocessing

time O(nhd+1
d ) by O(n logd+1 n) and the index size O(nhd

d−1) by O(n logd n).
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5 Bounded Preprocessing Time and Space

In the previous section, we achieved a worst-case guarantee for the search time. In this section we
describe how to bound the index size in the worst-case in trade-off to having an average-case look-up
time. Therefore, we fix hi in Definitions 3.1 and 3.3 to hi = h + i for some h to be chosen later but
the same for all error trees. By Lemmas 3.4, 3.11, and 4.2, the size and preprocessing time is O(nhd)
and O(nhd+1), and the index structure allows to search for patterns w of length |w| ≤ h in optimal
time O(|w| + occ).

For larger patterns we need an auxiliary structure which is a generalized suffix tree (see, e.g.,
[Gus97]) for the complete input, i.e., all strings in the base set S. The generalized suffix tree G(S) is
linear in the input size and can be built in linear time. We keep the suffix links that are used in the
construction process. For a pattern w, we call a substring v right-maximal, if v = w[i. .j] is a substring
of some string in S, but w[i. .j + 1] is not a substring of some string in S. The generalized suffix tree
allows us to find all right-maximal substrings of w in time O(|w|). This can be done in the same
way as the computation of matching statistics in [CL94]. The approach reminds of the construction
of suffix trees: First we compute a canonical reference pair ([Ukk95]) for the largest prefix of w that
can be matched in the generalized suffix tree. A canonical reference pair for the substring u is used to
represent a virtual node by a node x and a substring v such that u = path(x)v and depth(x) is as large
as possible. The prefix is right-maximal. Then we take a suffix link from the base of the reference
pair replacing the base by the new node. After canonizing the reference pair again, we continue to
match characters of w until we find the right-maximal substring starting at the second position in w.
This process is continued until the end of w is reached. The total computation takes time O(|w|)
because we essentially move two pointers from left to right through w, one for the border of the right-
maximal substring and one for the base node of the reference pair. If we build the generalized suffix
tree by the algorithm of Ukkonen [Ukk95], this process can also be seen as continuing the algorithm
by appending w to the underlying string and storing the lengths of the relevant suffixes.

Assume that t is an i-error length-l match of w. Then, in the relevant edit graph, any path from the
start to the end vertex contains i non-zero arcs. But we need at least |w| arcs to get to the end vertex.
Thus, there are at least |w| − i zero-weight arcs and there are at least |w|−i

i+1
consecutive ones. Thus,

there must be a substring of minimal length |w|−i

i+1
of w that matches a substring of t exactly.

Since we can handle patterns of length at most h efficiently with our main indexing data structure,
we only need to search for patterns of length |w| > h using the generalized suffix tree. For each
right-maximal substring v of w, we search at all positions where v occurs in any string in S in a prefix
of length at most |w| which we can easily find in the generalized suffix tree using bounded value range
queries (see Sections 2.2 and 2.5). For each occurrence we need to search at most |w| positions in
time O(d|w|) each. This yields a good algorithm on average if we set h = c(d + 1) logn, where n is
the cardinality of S, because the probability to find any right-maximal substring of length c log n is
very small.

Lemma 5.1 (Probability of Matching Substrings). Let w be a pattern generated independently and
identically distributed at random by a stationary ergodic source satisfying the mixing condition. Let
|w| = (d + 1)l. The probability that there is a substring u of w of length l that occurs in a prefix of
length |w| + d of any string in S is bounded by cn(|w| + d)|w|e−rmaxl for some constant c.

Proof. For a stationary ergodic source satisfying the mixing condition, the following limit exists
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[Pit85]:

rmax = lim
n→∞

−
maxt∈Σn{ln (Pr {t}) | Pr {t} > 0}

n
. (20)

(Observe that rmax is positive)
Suppose S = {s(1), . . . , s(n)} and set Ci,j,k = max{r | s(i)[j. .j + r − 1] = w[k. .k + r − 1}].

By stationarity of the source, Pr{Ci,j,k > l} = Pr{Ci,j,1 > l} = Pr{s(i)[j. .j + l − 1]}. Since
Pr{s(i)[j. .j + l − 1]} ≤ maxt∈Σl Pr{t}, we can apply equation (20) and find that Pr{Ci,j,k > l} ≤
ce−rmaxl for some constant c and growing l. As a result we get

Pr {|u| > l} = Pr







⋃

1≤k≤|w|,0≤i≤n,1≤j≤|w|+d

Ci,j,k > l







≤ n(|w| + d)|w|max
t∈Σl

Pr {t} ≤ cn(|w| + d)|w|e−rmaxl . (21)

As a result, for an arbitrary pattern w of length |w| ≥ c′(1 + ε)(d + 1) lnn, we find that the
expected work is bounded by

cd(|w|)3(|w| + d)e−rmaxδ|w|ne−rmaxc′ ln n = o(1) , (22)

for δ = ε
1+ε

and c′ > 1
rmax

, while we can find all shorter patterns in optimal time. The size of our data

structure is O(n logd n + N) and the preprocessing time O(n logd+1 n + N) where N is the size of
S.

6 Conclusion and Open Problems

In the context of text indexing, our data structure and search algorithm works best for small patterns
of length O(log n). The average-case analysis shows that these also contribute most. On the other
hand, in the worst-case there are more efficient methods for larger strings. The method of Cole et
al. [CGL04] starts being useful for large strings of length ω(log n) (the d-error neighborhood for
strings of length O(log n) has size O(logd n)). The method is linear if m = Ω(logd n). For worst-case
text indexing, significant progress depends upon the discovery of a linear-time look-up method for
medium to large patterns of size Ω(log n) ∩ O(logd n).

Another direction for further research concerns the practical applicability. Although we believe
that our approach is fairly easy to implement, we expect the constant factors to be rather large. There-
fore, it seems very interesting to study whether the error sets can be thinned out by including less
strings. For example, it is not necessary to include errors which “appear” on leaf edges of the preced-
ing error tree. An even more practical question is, whether an efficient implementation without trees
based on arrays is possible. First, arrays with all leaves are needed anyway for the range minimum
queries. Second, efficient array packing and searching is possible for suffix arrays [AOK02]. For
practical purposes a solution for d ≤ 3 is already desirable.
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[KS03] Juha K ärkk äinen and Peter Sanders. Simple linear work suffix array construction. In
Proc. 30th Int. Colloq. on Automata, Languages and Programming (ICALP), volume
2719 of LNCS, pages 943–955. Springer, 2003.

25



[KSPP03] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construc-
tion of suffix arrays (extended abstract). In Ricardo A. Baeza-Yates, Edgar Chávez, and
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