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Abstract

With the drastic increase in the number and the use of handheld devices, – mobile

phones and smart cards – light weight cryptography has come to the lime light. El-

liptic and Hyperelliptic curve cryptosystems (ECC, HECC) are emerging as the best

solutions for light weight cryptography. Like in any traditional cryptosystem, the size

of the cipher-text space is a significant factor indicating the achievable security level. In

the traditional systems, the size of the group on which the system is defined, defines

the cipher-text space. Unlike the traditional ones, ECC and HECC are defined on the

Jacobian of curves. Gaining knowledge about the size of the Jacobian is not straight-

forward and the computation is inefficient. Since the generic group order counting

methods are incapable of counting in large groups of cryptographic size (2160), special

methods were devised for counting in the Jacobian of hyperelliptic curves, which are

not yet fast enough for practical applications. In this thesis, we are bringing together

the advances in group order counting and the special properties of genus 2 hyperelliptic

curves. The Primorial method for group order counting is applied in a special interval

where the group order is predicted to be. The resulting method provides an improve-

ment factor of P
ϕ(P )

, where P is the product of the first p primes and ϕ is Euler’s totient

function. We will see that the value of p varies, depending on the expected size of the

Jacobian. It will also be shown that the factor of improvement becomes larger when the

size of the group gets larger.
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IT IS BETTER TO DO THE RIGHT PROBLEM THE WRONG WAY THAN THE
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Preface

The world of communication is expanding day by day and the number of devices for

communication are increasing exponentially. Especially, the world of handheld devices

has trillions of devices currently in use where as there were practically none in the early

’90s. With increased communication does come more need of security.

As the device-to-device handshakes are common, public key cryptosystems are of

supreme importance. The small devices have no power (neither computing nor bat-

tery) to use the traditional “hefty” algorithms like RSA. Cryptographers have been de-

veloping new cryptosystems based on elliptic and hyperelliptic curves for the past two

decades. The developments made in this field are fascinating.

But, unlike traditional systems based on RSA, where the security level of a cryp-

tosystem could be easily computed, cryptosystems based on the curves need more in-

formation to assess and assert the security. One of the parameters needed for asserting

the security is the size of Jacobian1 of the curves.

In this thesis we propose a method for counting the elements in the Jacobian. The

method we propose makes use of a generic group order counting algorithm applied

in the special conditions of hyperelliptic curves of genus 2 (which are best known for

hyperelliptic curve cryptosystems).

While the best algorithms of the day are still exponential (O(N
1
2 )), our method helps

to reduce the time/space requirement to a fraction ϕ(P )
P

where P is the product of primes

up to p. The value of p depends on the size of the curve. For the curves which are large

enough for cryptographic purposes, the reduction is up to 60%.

1Jacobian is a group of points or combinations-of-points on the curve in elliptic curves or hyperelliptic
curves respectively

xvii
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Chapter 1

Introduction

“Basic research is what I am doing,

when I don’t know what I am doing.”

- Wernher Von Braun.

With the migration of communication from paper to emails/SMS and other digital

media, the world has moved completely to the digital era. Even wires and cables are

technologies of the past. Now all happens in the air, wireless.

Technology has made life very easy. Connectivity is the new “keyword”. But there

is no coin without another side.

With the old media of communication, it was easier to know when the messages

were tampered with. It was easier to assure the integrity of messages, non-repudiation

was an integral part of the system.

But with the advent of the digital age, a message can be copied without leaving

any trace on the original one. Creating fake messages is a million times easier. Non-

repudiation doesn’t even exist in the horizon, unless it is specifically implemented.

With all the communication, not to mention all the financial, defense, military intel-

ligence communications too, happening through live wire, or even wireless, it is imper-

ative that we need methods to keep the information secure and also its integrity has to

be confirmed.

Security - this has been one of the silent parts of all the communication technologies

- dating back to 1940s, starting with ENIGMA. Everyone appreciated the revolutions in

communication technology, without really realising the importance of the silent revolu-

tions happening in the security area, which in fact made the communication revolutions

possible.

1



2 CHAPTER 1. INTRODUCTION

1.1 Light weight cryptography

The very first form of security was Private Key Cryptosystem. Starting from the age of

Caesar, it monopolised the message-security field up until mid 1970s.

Private key cryptosystems were good to keep unwanted people from reading the

messages. And that was the only thing a private key system could do. But it was FAST.

However, with the discovery of public key cryptosystems in 1976 [DH76], all the

other requirements of non-repudiation and message-signing could be satisfied. But it

was not fast enough to serve all the communication needs.

The computation technology grew and secure communication developed into a proper

blend of both public and private key cryptosystems. The processor power was too good

to notice the large requirements of public key cryptosystems. Even when man thrived

for speed, most of the communication needs were served with the above mentioned

rudimentary combination.

The new era in which billions or trillions of text messages are sent everyday, millions

of cars are opened with remote controls, with the large scale use of mobile phones,

smart cards and remote control keys, cryptosystems are entering a new dimension of

communication.

Most of the devices are getting smaller and the computing power is increasing, but

the communication needs and security needs are on a rise that there is a need for better

and light weight cryptosystems. So the ease and facilities of new-digital age comes with

a bottleneck, through which well encrypted messages cannot easily pass.

That is the beginning of light-weight cryptography - a new branch for cryptosystems

which equal the old ones in security, but which needs less resources.

1.2 Generic algorithms

Every cryptosystem has been developed to enable a channel through which the infor-

mation could be sent from a sender, to the receiver, from which an eavesdropper cannot

attain any information.

Some methods were developed to have channels which would inform the concerned

parties, when the message was read/tampered-with by the eavesdropper.

In this section, I give a review of the main cryptosystems in existence.
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1.2.1 Private key systems

Private key1 cryptosystems have always worked by making a reversible change to the

message and sending it over to the receiving end. The part of the cryptosystem at the

receiving end knows how to reverse the change to get the original message back.

The main advantage of this system is the speed. Whether it be simple toggling of

every bit of the message or XOR-ing the whole message with a randomly generated

bit-stream, the operations are very fast with computing devices.

The main disadvantage is, both the parties - the sending and receiving ends - have

to know exactly what the other party would do, otherwise the reversal of roles could

not happen. This is equivalent to having a private conversation ever before the commu-

nication happened - so that they could agree upon the secret method/key they wanted

to engage to encrypt/decrypt.

This also means that, every person has to have a private meeting, or a secret code/key

for every other person with whom he/she has to communicate. This requires a sophis-

ticated key-management system to keep the collection of keys.

1.2.2 Public key systems

Public key cryptosystems were introduced in 1976 [DH76] and they work based on

the possession of two keys by each party in the communication. The encryption and

decryption are not the mirror images of each other.

Both the sender and receiver possess two keys each - a private key and a public

key. As the name indicates, the public key is available in the public domain, where as

the private key is secret. The sender uses the public key of the receiver to encrypt the

message and it can only be unlocked (decrypted) using the private key of the receiver.

The key observation to make here is that the decryption is not the reversal of encryption.

The advantages of public key cryptosystem over private key cryptosystem are:

• Key management is easier

Instead of n2 keys for n participants in private key cryptosystem, a public key

cryptosystem needs only 2n keys for the same number of participants.

• Not just encryption

Public key cryptosystem provides the facilities for digital signature which in turn

makes non-repudiation also possible.

1A key in this section means the secret word/bit-stream
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• No preparation is required

The two parties need not necessarily meet to start a secure conversation. The se-

cret keys could be exchanged in public, without having the doubt of being eaves-

dropped.

Example: ElGamal [EG85] cryptosystem uses diffie-hellman key exchange [DH76]

which doesn’t require the meeting of the parties.

How does it work?

Public key cryptosystems are based on one-way functions. A one-way function is a

function for which it is easy to find out the image of an element, given any element

where as given an image, calculating the pre-image is infinitely hard. For more details

see 2.1

One of the often quoted examples of a one-way function is Integer Factorisation. It is

easy to multiply any two numbers to find their product. But once an arbitrary number

is given, it is hard to find out its factors. The often used way is trying to divide the

original number with every number smaller than that. It should be clear that the larger

the number is, the harder would be the problem to be solved.

Not surprisingly, one of the major public key cryptosystems, RSA uses precisely this

mathematical problem or one-way function, for its security.

Another often used mathematical one-way function is called Discrete Logarithm

Problem (DLP). In simple words, discrete logarithm problem is the problem of find-

ing out the logarithm of a given element, in a group. Logarithm being the reverse of

exponentiation - which could be done easily as it is just repeated multiplication. But for

finding the logarithm, the only way is to try every possible number which could be the

logarithm.

A formal definition of DLP is beyond the scope of this chapter. Being the main

problem which is used for the cryptosystem which is the focus of this thesis, DLP is

explained in depth in 2.1.

Even without going to the details of DLP, it should not be hard to understand that

the larger the size of the group, the harder the problem would be.

As one could imagine, these advantages do not come for free. The main disadvan-

tage of public key cryptosystem is that it is comparatively slower than private key cryp-

tosystems. In other words, public key cryptosystem needs more computing power to

have the equivalent security of a private key cryptosystem which has less requirements.

The requirement of computing power is represented with the number of bits of the

keys needed for security. In the table 1.1, one can see that in comparison with private



1.3. IMPROVEMENT OVER TRADITIONAL SYSTEMS 5

Bits of Security Symmetric Public key RSA/DH
with Private Key Algorithm (key size)

80 2TDEA 1024
112 3TDEA 2048
128 AES-128 3072
192 AES-192 7680
256 AES-256 15360

Table 1.1: NIST recommended Key Sizes

key cryptosystem of small bit-sized keys, public key cryptosystem needs much longer

keys.

As the public key systems need more resources, all the communications are still

based on private key systems. But the public key systems are used to set up the com-

munication - because that is the only kind of system which can be used for key-exchange

without previous agreement.

1.3 Improvement over traditional systems

Public key cryptosystem was used as the encryption method which was used to agree

upon the secret key for a private key cryptosystem. One time use of public key systems

to establish the connection was not very expensive (in terms of resources).

And the traditional computing devices could very well cope with this requirement.

But in the new climate, with very limited computational resources (handheld devices)

and limited power-supply (battery driven), public key cryptosystem has been strug-

gling to cope up.

The only way to solve this problem is having stronger and securer cryptosystems

with short key-lengths. New one-way functions were sought for, or the old ones had to

be applied in new setups.

The discrete logarithm problem, which was mentioned in the previous section was

found to be applicable on the groups of points of algebraic curves, called Elliptic Curves

[Kob87]. Later, the method was developed to be applicable on general forms of these

curves, which are called Hyperelliptic Curves [Kob89].

The newly developed cryptosystems promised better results with smaller keys in

comparison with the traditional public key cryptosystem.
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1.3.1 What is this thesis about?

The security level of a cryptosystem is proportional to the size of the underlying group

and could be raised by having a larger group. The size of the underlying group is an

indicator of the size of the cipher-text space. Larger the cipher-space, harder it would

be to crack the system.

From that it directly follows that the knowledge about the security level requires the

knowledge of the size of the group. In case of hyperelliptic curve cryptosystems finding

out the size of the underlying group is still a hard problem.

In traditional methods, the elements in the group were just numbers in a certain

range. The number of elements could be calculated easily. But in the new systems, the

elements of the system are sets of points, with special properties, on the curves - which

don’t have any specific range and counting them is hard.

Counting the number of elements in the group on which a hyperelliptic cryptosys-

tem is based, is the main theme of this thesis.

From the table 1.1, one can see that an 80 bit field is necessary for a secure hyper-

elliptic curve cryptosystem. Such a cryptosystem would have the group order ∼ 2160.

The present “state of the art” counting algorithms are of the order O(
√

N) where N is

the size of the group.

For the genus 1 hyperelliptic curves which are called elliptic curves the counting

problem has been solved successfully [Atk92, BSS99]. It has also been proved that

curves of genus larger than 2 are not secure for cryptography. Hence, this thesis focuses

on group order counting in the setting of genus 2 hyperelliptic curves.

1.4 Bird’s view

The rest of the thesis is organised in the following way.

Chapter Two: “Mathematical Background”

This chapter lays the foundation of the mathematics required for the rest of the

thesis. I have tried to make the chapter as much self contained as possible. In

this chapter, the reader could find the basics of different geometries - affine and

projective - followed by the basics of hyperelliptic curves.

In this chapter, which is the longest one in the thesis, one could also see the oper-

ations needed for making a hyperelliptic curve useful for cryptography.

Chapter Three: “State of the art”
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In this chapter, which has mainly two sections, I try to sketch the traditional meth-

ods which are used for counting in large groups. After explaining the traditional

methods, the chapter continues to the details of putting these methods into the

special set-up of counting in the jacobian of hyperelliptic curves.

The reader could also see the latest methods which are employed to count in the

jacobian of genus 2 hyperelliptic curves.

This chapter ends with posing the main problem which the rest of the thesis ad-

dresses.

Chapter Four: “The Solution”

This chapter is the heart of the thesis. All the chapters leading up to it make the

scene for the solution explained in here. The solution is gradually developed from

a naive method which are used for small groups. Each step of development is

explained and has been treated with analysis and specifications of the advantages

over the previous method.

At the culmination of this gradual evolution of solutions, the reader could see a

method which is better than the existing methods for counting in the jacobian of

genus 2 curves, and also a method which decides whether the counting is worth

proceeding or would be a waste or resources.

Chapter Five: Implementation, Results and Future Prospects

The final solutions proposed in chapter 4 are implemented in Sage and Magma

and were tested for neither too small nor too large hyperelliptic curves. The de-

tails of the implementation and the comparison of the results are provided in this

chapter.

The author’s comment about the future of the project is added to this chapter as a

final note.

Appendix A: Algebra Refresher

Even though the chapter on Mathematical Background tries to address the issue of

giving the background necessary for reading and understanding the thesis, most

of the basic definitions and proofs are omitted in the chapter. The appendix tries

to cover the minimum requirements needed for following the algebraic notations

in the thesis.

Appendix B: Curve Database

As a part of testing and comparing the algorithms, we generated about 150 ran-

dom hyperelliptic curves. In this appendix, the reader can look them up when

they are mentioned in some of the chapters.
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1.5 A note on notation

Most of the mathematical notation in chapter two follows the style in Fulton [Ful69].

For the rest of the thesis, the following table 1.2 gives a list of characters and variables

used.

Variables Description
P,Q,R Points on an elliptic curve (chapter 3)
p Prime numbers
l, k Positive integers
Di Divisors of a hyperelliptic curve
Fq Field over which a hyperelliptic curve is defined
m Characteristic of the base field
C (hyper) Elliptic curve
J Jacobian of a curve
w Weil Interval
[wl, wu] Weil Interval, limits
P, pr Primorial (chapter 4)
g, #g Size and count of giant steps

Table 1.2: Note on Notation



Chapter 2

Mathematical Background

“Young man, in mathematics you don’t understand things,

you just get used to them.”

- John von Neumann.

The initial part of this chapter is concerned about basics of cryptosystems. In the

second part, the properties of algebraic curves with special focus on hyperelliptic curves

are explained.

This chapter assumes that the reader has basic knowledge of algebraic structures. A

very small refresher chapter for basic algebra is provided as appendix A. For a detailed

study of the necessary algebra, the reader is encouraged to peruse [Her86, Her75].

2.1 Cryptographic requirements

As it was mentioned in chapter 1, hyperelliptic curve cryptography is one way of imple-

menting public key cryptography. In public key systems, everybody has a public key

and a private key. Public key is used to encrypt and the private one is for the reverse

process. The public key, as the name indicates, lies in the public domain and anyone

can encrypt. The private key does the secret job and that job has to be impossible (com-

putationally hard) without the key - so hard because the security is based on it.

These two processes can be mathematically described as two functions. Encryption

being the function f taking a message from the set of messages and gives its image in

the set of cipher-texts. Decryption is f−1 which should do the reverse. From the above,

we have seen that f has to be a one-way function.

In layman terms, it should be like a door which could be easily opened from one side

9
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using the handle, where as the other side has no handle and cannot be opened without

the key.

2.1.1 One way functions

One way functions are mathematical functions for which computing the inverse func-

tion is exceptionally hard. To be precise, computing the inverse of any element in the

range takes exponential amount of resources (time/space).

Formally, a function f : {0, 1}∗ −→ {0, 1}∗ is a one way function iff the following are

true.

1. For x ∈ {0, 1}∗, computing f(x) is polynomial.

2. For y ∈ {0, 1}∗, computing the pre-image x of y such that f(x) = y is hard, non-

polynomial.

A very often quoted example is “Integer Factorisation”. The forward function is the

multiplication of any given numbers. According to computational terms, multiplication

has easy (efficient) algorithms - irrespective of the size of the inputs.

At the same time, given any integer, finding out its factors is a hard problem. The

only1 way to compute the factors is a trial and error method. If the size of the input is

measured in terms of the bits in its representation, the factorisation is an exponentially

hard process.

Anybody who reads this thesis would be able to calculate 63×77 in their head.

But factorising a small number as small as 221 might be hard. The only way to

find the factors is to try trial and error for every prime number until a factor is

found.

63 × 77 = (70 − 7) × (70 + 7) = 702 − 72 = 4851

221 = 13 × 17

1There are some index calculus methods developed to solve this problem. But they are
(sub)exponential algorithms
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One of the mostly used public key cryptosystems, RSA, relies on the hardness of

Integer Factorisation.

Another widely used one-way function is the Discrete Logarithm function. It is usu-

ally dubbed as Discrete Logarithm Problem (DLP).

2.1.2 Discrete Logarithm Problem - DLP

Discrete logarithm is the discrete analogue of the natural (common) logarithm.

Given a, b and x, positive real numbers, x is the logarithm of a to the base b iff a =

bx = b × b ×× . . . x times

Instead of positive real numbers, let us take the set of positive integers less than p, a

prime number. This will be the set Zp = {0, 1, . . . , p − 1}. We can define the operation

(multiplication) just as the case above, except that the result should be modulo p.

bn = (b × b × . . . n times )mod p

Such a set is called a cyclic group2. It is a property of cyclic groups that each element

a can be generated by repetitively multiplying the generatorelements.

If G is a cyclic group, then each a ∈ G can be written as bk if b is a generator of G;

where k is an integer not larger than n. The integer k is called the discrete logarithm of

a to the base b in the group G. We can define the discrete logarithm to the base b as.

logb : G → Z

In group theory, for every prime, there is a cyclic group as defined above.

The discrete logarithm problem is the computing of the logarithm of a given element

of a group. It is exponentially hard - just like the integer factorisation problem. The only

way to find it is the naive brute force3.

The easy side of the function, the exponentiation part can be defined as given below,

for g a generator of Z
∗
p for some prime p.

f(p, g, x) = 〈p, g, gx(mod p)〉

2More details of groups and cyclic groups are given in the appendix A
3sub-exponential
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Similar to the little computation in the previous section, every reader of this

thesis can compute in mind that 27 is 11 in Z
∗
13.

27 = 128 ≡ 11 mod 13

But, to find the log2 5 in the same group of Z
∗
13, one will keep computing

2i mod 13 for all i < 9.

The hardness of DLP is leveraged in many cryptographic schemes such as Diffie-

Hellman key exchange protocol [DH76].

In this thesis, we will be looking into a special case of DLP which is applicable in the

(hyper)elliptic curve setting. More details are provided in 2.7

2.2 Algebraic geometry

In this section we will see the basics of algebraic geometry which are very essential for

the rest of the thesis. For a better understanding of the details, the reader may refer

to Fulton [Ful69]. Also a very good explanation about projective space is given in the

appendix of [ST92].

For the basic algebra needed for this section, the reader is encouraged to have a quick

perusal of the appendix A

Note: From here onwards until the end of the chapter, k is a field and K is its alge-

braic closure.

2.2.1 Affine geometry

Definition 1 (Affine Space). An(k) means the Cartesian product of k with itself n times.

An(k) is the set of n-tuples of elements of k. An(k) is called n-dimensional affine space over

k. Its elements are called points. Simply An means An(K) where k is understood and K is its

closure.

A1(k) is the affine line and A2 is the affine plane where k is understood from the context.

The points in An(k) are called the rational points of An.

Definition 2 (Zero of a polynomial). If F ∈ k[x1, x2, . . . , xn], a point P = (a1, . . . , an) ∈ An

is a zero of F if F (P ) = F (a1, . . . , an) = 0. The set of zeros of F is called the hyper-surface

generated by F and is denoted by V (F ).
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Definition 3 (Affine algebraic set). If S is any set of polynomials in k[x1, x2, . . . , xn], then

V (S) = {P ∈ An | F (P ) = 0 for all F ∈ S}

V (S) =
⋂

F∈S

V (F )

A subset X ∈ An is an affine algebraic set if X = V (S) for some S.

Definition 4 (Affine variety). An affine algebraic set is called an affine variety if it cannot be

written as a union of two smaller affine algebraic sets.

Or

It is an irreducible affine algebraic set. i.e, if X = V (S) and the ideal generated by S is a

prime ideal in k[x1, x2, . . . , xn], then X is an affine variety.

2.2.2 Projective geometry

Two lines intersect at exactly one point. Is it always true? What happens if they are

parallel?

In our case, we need any two lines to intersect - whether they are parallel or not. So

we are trying to enlarge the plane so that they will intersect at infinity. For the same,

we identify each point4 (x, y) ∈ A2 with points (x, y, 1) ∈ A3. Every point (x, y, 1) deter-

mines a unique line which passes through the origin and the point (x, y, 1). Every line

through (0, 0, 0) which are in the place z = 0 are the points at infinity.

Definition 5 (Projective Space). Projective Space over k, written as P n(k) or simply P n is de-

fined to be the set of all lines through (0, 0, . . . , 0) in An+1(k). Any point x = (x1, . . . , xn+1) 6=
(0, . . . , 0) determines a unique line namely {(λx1, . . . , λxn+1) | λ ∈ k}.

Two points (x) and (y) are defined to be equivalent iff there is a nonzero λ ∈ k such that:

yi = λxi for i = 1, . . . , n + 1

One other way to identify P n is as the set of equivalence classes of points in An+1−{0, . . . , 0}.

Definition 6 (Homogeneous coordinates). Elements of P n5 will be called points. The equiv-

alence classes of points are given by:

4For ease of understanding we take A2 and A3. In general, we can take An and An+1 with (n + 1)th

co-ordinate to be one.
5Pn means Pn(K) when k is known and K is its closure
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(x1, . . . , xn+1) ∼ (λx1, . . . , λxn+1); λ 6= 0, xi ∈ k.

If a point P ∈ P n is determined by some (x1, . . . , xn+1) ∈ An+1, we say that (x1, . . . , xn+1)

is a set of homogeneous coordinates for P . In fact, (x1, . . . , xn+1) stands for an equivalence

Definition 7 (Homogeneous Polynomial). A homogeneous polynomial is a polynomial with

all its terms having the same degree.

Or formally,

F (λx1, . . . , λxn+1) = λdeg(f)F (x1, . . . , xn+1) for all λ ∈ K.

Definition 8 (Projective algebraic set, Projective variety). If S is any set of homogeneous

polynomials in k[x1, x2, . . . , xn+1],

V (S) = {P ∈ P n | F (P ) = 0 for all F ∈ S}

V (S) =
⋂

F∈S

V (F )

A subset X ⊆ P n is a projective algebraic set if X = V (S) for some S.

A projective algebraic set is called a projective variety if it cannot be written as a union of

two smaller projective algebraic sets.

Or

It is an irreducible projective algebraic set. i.e, if X = V (S) and the ideal generated by S,

represented by I(V ), is a prime ideal in k[x1, x2, . . . , xn+1], then X is a projective variety.

When V (I) is a projective or affine variety then the generator polynomials of I(V )

are irreducible. Otherwise, the union of the factors of these polynomials form the same

ideal, as the roots of the polynomials are the same. Now, the ideal formed is prime ideal.

Suppose, for example that the ideal is generated by only one irreducible polynomial:

I(V ) = F . Then GH ∈ (F ) ⇒ G ∈ (F ) or H ∈ (F ). In other words: F divides G or H .

2.2.3 Affine and projective spaces - relation

We came up with the projective space, in the beginning of this section, to enable any

two lines to intersect at exactly one point. Now we should see how it happens. From

definition 5, we know that a point (x, y, z) ∈ P 2 is equivalent to (x/z, y/z, 1) ∈ P 2 which
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is the equivalent of (x, y) ∈ A2. Now, we should try to get the points at infinity by

putting z = 0 in (x, y, z) ∈ P 2. We get a point at infinity of A2. Using homogeneous

coordinates and polynomials we can find the intersection of the lines (x, y, z) in the

projective plane z = 0. The intersection represents the point at infinity of A2 which will

be the point of intersection of the lines under consideration. This sounds really absurd.

But we define that all lines in the plane z = 0 and passing through origin corresponds

to directions in the affine space. So we can define the projective space as follows.

P 2 = A2 ∪ {set of directions in A2}

So, all lines in the same direction will intersect at one of these points.

Now, how do we define it formally? We can define the set of direction in A2 by P 1.

So, P 2 = A2 ∪ P 1. Following represents the mapping between the two spaces.

{[a, b, c] : a, b, c not all zero}
∼ ↔ A2 ∪ P 1

[a, b, c] →
{

(a, b) ∈ A2 if c 6= 0

[a, b] ∈ P 1 if c = 0
(2.1)

[x, y, 1] ← (x, y) ∈ A2 (2.2)

[A,B, 0] ← [A,B] ∈ P 1 (2.3)

Definition 9 (Homogenisation and Dehomogenisation). F ∈ k[x1, . . . , xn+1] is called a

form if it is a homogeneous polynomial and we define F∗ = F (x1, . . . , xn, 1). This is called

de-homogenisation.

If we have a polynomial in n variables, we can replace xi by xi/xn+1. This transformation

gives F ∗ from F . This is called homogenisation.

Definition 10 (Algebraic Curve). An algebraic curve is always an algebraic variety of dimen-

sion equal to one. In two dimensional plane (P 2), a projective variety C is called an algebraic

curve when I(C), the ideal of k[x1, . . . , xn+1] which generates C, is generated by a single poly-

nomial ∈ k[x1, . . . , xn+1] which is irreducible by definition.

We denote V (I), [curve generated by ideal I] by C

C : F (x1, . . . , xn+1) = 0 ∈ k[x1, . . . , xn+1]

and I(C) = 〈F 〉.

From here onwards, C is an algebraic curve. Let it be C : F (x1, . . . , xn).
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Definition 11 (Coordinate ring). Coordinate ring of C over k is the quotient ring given by

k[C] = k[x1, . . . , xn]/I(C)

Similarly, the coordinate ring of C over K is defined as

K[C] = K[x1, . . . , xn]/I(C)

An element of K[C] is called polynomial function on C. They are polynomials modulo C.

Definition 12 (Function field and rational functions). The function field k(C) of C over k

is the field of fractions of k[C]. Similarly, K(C) the function field of C over k is the field of

fractions of K[C].

K(C) =

{
G

H
| G,H ∈ K[C], deg(G) = deg(H)

}

An element of K[C] is called a rational function.

Definition 13 (Zeros and Poles). Let R ∈ K(C)∗ and P ∈ C. If R(P ) = 0, then R is said to

have a zero at P . If R is not defined at P , then R has a pole at P . (We write R(P ) = ∞)

Definition 14 (Uniformising parameter). Let P ∈ C. For all G ∈ K(C)∗, there exist

T, S ∈ K(C)∗,mP ∈ Z such that,

G = TmP S and T (P ) = 0 and S(P ) 6= 0,∞.

The function T is called a uniformising parameter for P .

Definition 15 (Intersection multiplicity). Let G,S ∈ K(C) and P ∈ C. Let T ∈ K(C) be

the uniformising parameter for P :

G = TmP S and T (P ) = 0 and S(P ) 6= 0,∞. Then mP is the intersection multiplicity of G at

P .

Theorem 16 (Bezout’s Theorem ). Let F and G be projective plane curves with degrees m an

n respectively. Assume F and G have no common components. Then :

∑

P∈F∩G

I(P ) = mn

Where I(P ) is the intersection multiplicity at point P and P ∈ F ∩G are the common points

of F and G. i.e, the points of intersections.

Definition 17 (Order of Polynomial functions). The order of a polynomial function G ∈
K[C] at a point P ∈ C is the intersection multiplicity at that point and denoted by ordP (G).
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Definition 18 (Order of rational functions). The order of a rational function R = G/H ∈
K(C) at a point P ∈ C is defined as: ordP (R) = ordP (G) − ordP (H).

2.2.4 Divisors

The ideals generated by the polynomial in function field of C are sub-varieties of C. i.e,

the intersection of roots of I(C) and a rational function. We name them as Divisor.

Definition 19 (Divisor). A divisor D is a formal sum of points P ∈ C:

D =
∑

P∈C

mP P

with mP ∈ Z and for all but finitely many mP = 0.

The degree of D is the integer deg(D) =
∑

P∈C mP .

The order of D at P is the integer ordP (D) = mP .

Definition 20 (support of a divisor). Let D =
∑

P∈C mP P be a divisor. The support of D is

the set:

supp(D) = P in C : mP 6= 0

Definition 21 (Addition of divisors). The divisors form a group under addition. The group

of divisors of C are denoted by Div(C). We can add two divisors as follows.

∑

P∈C

mP P +
∑

P∈C

nP P =
∑

P∈C

(mP + nP )P

The subgroup of Div(C) with divisors of degree 0 is Div0(C).

Definition 22 (GCD of divisors.). Let D1 =
∑

P∈C mP P and D2 =
∑

P∈C nP P . Then the

gcd(D1, D2) is defined by

gcd

(
∑

P∈C

mP P,
∑

P∈C

nP P

)
=

∑

P∈C

min(mP , nP )P

Definition 23 (Principal Divisor). Let R = G/H ∈ K(C) and G,H ∈ K[C]. The divisor of

a rational function R is called a principal divisor and defined as:

div(R) =
∑

P∈C

ordP (R)P

By applying definition 18 at every points of G and H , we know that div(R) = div(G) −
div(H). We can see that div(R) ∈ D0.
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Definition 24 (Principal Divisor Group). The principal divisor group is defined by:

P = {Div(R) | R ∈ K(C)}

We have,

P ⊂ Div0(C) ⊂ Div(C).

Definition 25 (Jacobian). The Jacobian of the curve C is defined by the quotient group:

J = J(C) = Div0(C)/P

Let D1, D2 ∈ Div(C). We have the following equivalence relation on Div(C):

D1 ∼ D2 ⇔ D1 − D2 ∈ P

Or equivalently:

D1 ∼ D2 ⇒ ∃R ∈ K(C) : D1 = D2 + div(R)

2.2.5 Genus of a curve

The genus of a curve is better explained with the help of a well celebrated theorem in

mathematics. For any given curve, the problem which is given below gives the value of

genus of the curve and the theorem stated below gives a definition to the genus.

For any divisor D, the set

L[D] = {f ∈ K(C) | (f) + D ≥ 0} ∪ 0

Where (f) is the principal divisor formed by f . L(D) is the space of all rational functions

with poles no worse than D+ (points having positive order) and zeros of multiplicity at

least as specified by D−.

L(D) is a vector space over K The dimension of L(D) is defined to be ℓ(D). The

problem of finding the dimension of the vector space is the Riemann-Roch problem.

Theorem 26 (Riemann’s Theorem). There is a constant g such that ℓ(D) ≥ deg(D) + 1 − g

for all divisors D. The smallest such g is called the genus of C. g is always a non-negative

integer.

The theorem stands as a definition for genus of a curve.
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2.3 Hyperelliptic curves

With the preparation made till here in this chapter, we are ready to see the definition and

properties of Hyperelliptic curves. Hyperelliptic curves are a class of algebraic curves.

They can be seen as generalisations of elliptic curves. We classify them depending on

the genus of the curve. For all genus, g ≥ 1 we have hyperelliptic curves. A detailed,

simple and beautiful tutorial on Hyperelliptic Curves is available in [MWZ96, Kob94].

Definition 27 (Hyperelliptic Curves). Let k be a field and K be the algebraic closure of k. A

hyperelliptic curve C of genus g over k is defined by an equation of the form.

C : y2 + h(x)y = f(x) in k[x, y] (2.4)

Where h(x) ∈ k[x] is a polynomial of degree at most g and f(x) is a monic polynomial of

degree 2g +1 and there are no solutions (x, y) ∈ K2 which simultaneously satisfy y2 +h(x)y =

f(x) and the partial derivatives 2y + h(x) = 0 and h′(x)y − f ′(x) = 0. A singular point on C

is a solution (x, y) ∈ K2 which simultaneously satisfies all these conditions.

So, in other words, a hyperelliptic curve does not have any singular points.

Definition 28 (Rational points, Points at infinity, finite points). Let L be an extension field

of k. The set of L− rational points on C are denoted C(L) and is the set of points P = (x, y) ∈
L × L which satisfy the equation 2.4 of curve C together with a special point at infinity 6

denoted by ∞. The set of points C(K) is simply denoted by C. The points in C other than ∞
are finite points.

Definition 29 (Opposite, special and ordinary points). Let P = (x, y) be a finite point on

C. The opposite point of P is the point P̃ = (x,−y − h(x)) (Note that P̃ is indeed on C.). We

also define the opposite of ∞ by ∞̃ = ∞ itself. If a finite point P satisfies P̃ = P , then it is

called a special point. Otherwise P is an ordinary point.

2.3.1 Examples

1. The figure shows a hyperelliptic curve over R.

y2 = (x − 2)(x − 1)x(x + 1)(x + 2)

In this example the genus of the curve is 2. The curve can be seen as the first curve

in Figure 2.1.

6point at infinity is in the projective plane P 2(L).It is the only projective point lying on the line at ∞
that satisfies the homogenised hyperelliptic curves equation. If g ≥ two then ∞ is a singular point but
allowed since ∞ /∈ L × L
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Figure 1: y2 = (x − 2)(x − 1)x(x + 1)(x + 2)
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Figure 2: y2 = (x − 1)x(x + 1)
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2. The following figure shows a hyperelliptic curve of genus 1. In other words, this

is an elliptic curve. The curve can be seen as the second curve in Figure 2.1.

y2 = (x − 1)x(x + 1)

3. The hyperelliptic curve given by the equation:

y2 + xy = x5 + 2x4 + x3 − 5x2 + 10

(a) When the curve is defined over the finite field Z11, the valid points are:

(1, 4), (1, 6), (4, 2), (4, 5), (5, 7), (5, 10), (8, 0)∗, (8, 3), (9, 5), (9, 8)

The point which is starred is a special point.

(b) When the curve is defined over the finite field Z7, the valid points are:

(1, 1), (1, 5), (2, 6), (3, 5), (3, 6), (4, 4), (4, 6), (5, 3), (5, 6), (6, 4)

Here we can see that there are no special points.

Definition 30 (Coordinate ring and polynomial functions.). The definitions are same as the

earlier ones.

Coordinate ring of C over k.

k[C] = k[x, y]/(y2 + h(x)y − f(x))

Coordinate ring of C over K.

K[C] = K[x, y]/(y2 + h(x)y − f(x))

Elements of K[C] are called polynomial functions.

Definition 31 (Function field and rational functions). The function field k(C) of C over k

is the field of fractions of k[C]. Similarly, K(C) the function field of C over k is the field of

fractions of K[C].

K(C) =

{
G

H
| G,H ∈ K[C], deg(G) = deg(H)

}
7

An element of K[C] is called a rational function.

7the condition for degree is necessary iff G,H are from the homogeneous coordinate ring [Ful69]
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2.3.2 Divisors

In the last section we saw all the definitions and primary details of divisors of an alge-

braic curve. Those are applicable for a divisor of hyperelliptic curves also.

An example would make it clearer with the case in hand.

Example 32. Let P = (x1, y1) be a point on C. Then,

div(x − x1) =

{
P + P̃ − 2∞ P is ordinary ,

2P − 2∞ P is special .

(x − x1) is the line which is parallel to y axis and passes through the point (x1, 0).

The y value of C for the value x1 is y1. The line passes through this point of the curve

C. If the point P is an ordinary point, then there are two y values for the same x. These

points correspond to P and P̃ .

Or

If P is a special point, its opposite also is the same point P and the line passes

through it. So is the divisor.

2.3.3 Semi-reduced divisors

A semi-reduced divisor is a divisor of the form:

D =
∑

i

miPi −
(

∑

i

mi

)
∞

Where each mi ≥ 0 and all the Pi’s are finite points such that if P ∈ supp(D), then

P̃ /∈ supp(D) unless P is special in which case mi = 1.

Fact 33. For each divisor D ∈ D0 there exists a semi-reduced divisor D1(D1 ∈ D0) such that

D ∼ D1.

2.3.4 Reduced divisors

Definition 34 (Reduced Divisor). Let D =
∑

i miPi − (
∑

i mi)∞ be a semi-reduced divisor.

We call D to be a reduced divisor, if it satisfies the following property.

∑
mi ≤ g

Fact 35. For every divisor D ∈ D0, there exists a unique reduced divisor D1 such that D ∼ D1.
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2.3.5 Representations of divisors

Divisors are combinations of points on the curves. There are at least three different ways

of representing divisors. For the purposes of this thesis, only two of them are needed.

Point or explicit representation

This is the simplest form of representation. This is the representation which directly

follows from the definition of the divisor word by word. Here, we represent the divisors

just as the formal sum of points along with the order of points. If P = (xi, yi) are the

points in the support of the divisor and mi’s are the order of point Pi’s respectively:

D =
∑

i

miPi

For computational purposes this representation is not advisable. One drawback of

this form is that the values of xi’s and yi’s are in K which is the closure of the field k on

which we have defined our curve.

Mumford representation

This is the representation which is mostly used for the computing. The reasons for the

ease of use in computing will be clear, once the representation is described.

A semi-reduced divisor can be represented with two polynomials. Let D be the

divisor.

D =
∑

i

miPi − (
∑

mi)∞

The two polynomials are:

1. U(x) = Π(x − xi)
mi : This is a monic polynomial of degree

∑
mi.

In fact, this is a polynomial which has roots, which have the same x-coordinate as

the points in the support of the divisor. The multiplicities of the roots also is the

same as the order of the corresponding point.

2. V (x) - for the representation of y coordinates. There are two cases here.

(a) If all the points Pis are distinct.

V (x) =
∑

i

yi

(
Πj 6=i (x − xi)

Πj 6=i (xi − xj)

)
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V (x) is the unique polynomial of maximum degree one less than degree of U .

i.e, deg(V ) ≤ deg(U) − 1. Also, that V (xi) = yi for all xi.

(b) If all the points are not distinct.

We have to find out a V which satisfies the following condition along with

the condition V (xi) = yi.

V (x) =




The unique polynomial of degree smaller than∑
i mi − 1 such that if multiplicity of Pi = mi(

d
dx

)j
[V (x)2 + V (x)h(x) − f(x)]x=xi

= 0

for 0 ≤ j ≤ mi − 1




In other words, V (x) is the unique polynomial such that:

(x − xi)
mi | (V (x)2 + V (x)h(x) − f(x))

This, what is seen above is given by the following theorem [MWZ96, Mum84].

Theorem 36. Let D =
∑

i miPi − (
∑

mi)∞ be a semi-reduced divisor. Where P = (xi, yi) are

the points and mi are the order of the points respectively.

Let a(x) = Π(x − xi)
mi and b(x) be a unique polynomial which satisfies:

1. deg(b(x)) ≤ deg(a(x))

2. b(xi) = yi for all i for which mi 6= 0

3. a(x) divides (b(x)2 + b(x)h(x) − f(x))

Then D = gcd(div(a(x)), div(b(x) − y)).

For proof of the theorem [MWZ96] and for more details of Mumford representation

refer [Mum84].

Now we can see whether these polynomials a(x) and b(x) are constructable. a(x) is

easy. For b(x):

1. P = (xi, yi) is ordinary.

Let b(x) =
∑

i ci(x − xi)
mi be the polynomial we need. It is easy to see that b(x)

satisfies the conditions. We have to find out the constants ci’s. From bi(xi) = yi

we get c0. Then (bi(x)2 + bi(x)h(x) − f(x)) = 0 for x = xi and for all the mi − 1

derivatives. This gives us enough equations to find out the constants.
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2. P = (xi, yi) is special. (mi = 1) Here we can directly see that bi(xi) = yi satisfies all

the conditions.

Now, using Chinese Remainder Theorem [Knu97] for polynomials, we can find a

unique polynomial b(xi) ∈ k[x] which can represent the divisor along with a(x).

b(x) ≡ bi(x)(mod(x − xi)
mi) for all i

The polynomials a(x) and b(x) together will represent the divisor.

The main advantage of this representation is that we can have the representation in

k[x]. We need not bother about the closure of k. All the calculations also can be done in

k[x]. This we will see later.

2.4 Jacobian of a curve

In the last section we saw the definition of jacobian of a curve. In this section the details

of Jacobian is further explored.

Let D0 = {set of all divisors of degree 0}. The set of divisors of rational functions

form the principal divisors, f{P} ⊂ D0. And the jacobian, J is the quotient group

D0/P .

Let D1, D2 ∈ D0; D1 ∼ D2 if D1 −D2 ∈ P . That is, D1 = D2 + (f) for some f ∈ K(C).

By definition itself J is a group.

2.4.1 Group operation in Jacobian

Jacobian is a group by its definition itself and the operation of divisor addition satisfies

all the group axioms. But for the sake of a formal-ness, one could say that it is the

addition of two reduced divisors.

J is a group of equivalence classes (see facts 33 and 35). Every divisor ∈ J has an

equivalent reduced divisor. In every class of J , there will be a unique reduced divi-

sor. Hence, addition in the jacobian is the addition of two equivalence-classes in the

Jacobian. The classes can be represented by the unique reduced divisor present in each

class8. So, essentially, the addition of two classes boils down to adding two reduced

divisors.

Once two reduced divisors are added, the result is either a reduced divisor or a semi-

reduced divisor. If it is a reduced divisor it already represents the resulting equivalence-

class in which it is a member. On the other hand, if it is a semi-reduced divisor, the

8this is similar to representing Zp by the smallest positive numbers which can represent the class
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reduced divisor equivalent to the semi-reduced divisor to represent the resulting class

(there are algorithms to compute the representative reduced divisor of an equivalence

class).

Let [D1] and [D2] be the two classes to be added. And the result be [D3].

[D1] + [D2] = [D3]

This is done by:

D1r ⊕ D2r = D3r

Where D1r represents [D1], D2r represents [D2] and D3r represents [D3] and all Dir are

reduced divisors. And ⊕ stands for the addition of the divisors and then the reduction.

How do we do this in practice? For the addition in the jacobian, we have many

algorithms available. They use different types of representations of the divisors, which

are explained in one of the following sections (Section 2.6). Before looking into the

details of the algorithms, let us have a look to the different representations of divisors.

Definition 37 (k-rational Divisor). Let P (x, y) be a point on C and σ be an automorphism of

K over k. Then P σ = (xσ, yσ) also is a point on C.

A divisor D =
∑

mP P is a k-rational divisor if Dσ =
∑

mP P is equal to D for all auto-

morphisms σ of K over k.

A divisor is k-rational does not mean that all the points are k-rational.

2.5 Frobenius endomorphism

Let g be a positive integer and let Fq be a finite field of q = pn elements. Let C be the

hyperelliptic curve defined by y2 = f(x) where f(x) is a monic polynomial of degree

2g + 1 with coefficients in Fq and with distinct roots. The roots (coordinates) may be in

the base-field or in an extension field. Let J represent the Jacobian of the curve.

Let us now consider a q-power Frobenius endomorphism φ(x) = xq. The elements of

Fq are not affected by φ, but in the extension fields, it is non-trivial. The map transforms

the points on the curve by transforming their coordinates. For the same reason, the

mapping extends to divisors, by changing the points.

But on closer look, the action of changing a divisor is also the changes on the coef-

ficients of the Mumford representation of the divisor. Since the divisor is defined over

Fq, the mapping φ may permute its points but the divisor is left without any change.
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2.5.1 Characteristic polynomial

The Frobenius operator φ acts linearly and it has a characteristic polynomial of degree 2g

with integer coefficients. In genus two, the characteristic polynomial has the following

form.

χ(X) = X4 − s1X
3 + s2X

2 − s1qX + q2

so that χ(φ) is the identity map on all of J .

According to “Riemann hypothesis for curves”, on the roots of the zeta functions of

curves, which was proved by Weil, the complex roots of χ have absolute value
√

q. In

genus 2, the bounds for it are | s1 |≤ 4
√

q and | s2 |≤ 6q.

2.5.2 Bounds on cardinality - Weil Interval

The Frobenius is very closely related to the number of points on the curve and also to

the divisors in J , over the base field and its extensions.

Theorem 38. Let J be the Jacobian variety of a hyperelliptic curve C. The group of Fq rational

points on J is denoted by J(Fq). Let χ(t) be the characteristic polynomial of the qth-power

Frobenius endomorphism of C, then the order of the Jacobian is given by #J(Fq) = χ(1).

From the theorem it is clear that the knowledge of χ is equivalent of counting the

jacobian.

There are two additional results in the case of genus two curves. If #C(Fqi) is the

number of points of C in Fqi , the following are true.

#C(Fq) = q − s1

#C(Fq2) = q2 − s1
2 + 2 · s2

These details help in fixing an interval for the order of the Jacobian. The small interval

is called the Hasse-Weil interval.

⌈(√q − 1)2g⌉ ≤ #J(Fq) ≤ ⌊(√q + 1)2g⌋

It is also clear, if the order of jacobian is known, determining the characteristic polyno-

mial becomes easier.
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For genus 2

The width of the Hasse-Weil interval is close to 4gqg− 1
2 . In case of genus 2, w = 2⌊4(q +

1)
√

q⌋.

2.6 Addition algorithms for divisors

In section 2.4.1, we saw how the Jacobian of a hyperelliptic curve acts as a group and

how the group law functions. In this section we will see the various methods for group

addition.

2.6.1 Geometrically what is it?

We are concerned about the addition of reduced divisors of a genus g hyperelliptic

curve. Consider that we have two reduced divisors, D1 and D2.

D1 =
∑

i

miPi −
(

∑

i

mi

)
∞ and D2 =

∑

i

miQi −
(

∑

i

mi

)
∞

where the Pi and Qi are points on C.

The idea is to find out a curve which passes through the points Pi and Qi with corre-

sponding intersection multiplicities so that the intersection cycle of the curve will give

D1 + D2. Let us draw that curve. We can see that this new curve will intersect with a

few more points of C. Now we have to draw a new curve which passes through the

opposites of the new intersections with the same multiplicities of their opposites9. This

new intersection cycle is the resulting reduced divisor which is the desired sum D1 +D2

For ease of explanation, we will consider curve of genus 2. So we have:

D1 = P1 + P2 − 2∞ and D2 = Q1 + Q2 − 2∞

From geometry, we know that these points determine a unique cubic polynomial

b(x) which passes through them with respective multiplicities (in this case all multiplic-

ities are 1). Substituting b(x) for y in the equation of the hyperelliptic curve, we get:

b(x)2 + b(x)h(x) = f(x) (2.5)

Solving the equation gives us 6 solutions (points on the curve) of which 4 of them are

9The reason for this is to have an identity element [ST92, Sil86]
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known to us. Let the new points be R1 and R2. Then the new divisor D3 = R̃1 + R̃2−2∞
is the sum of D1 and D2.

2.6.2 Examples

Example 39. A more visual representation of the aforementioned group law can be seen

in the first picture in Figure 2.2.

Blue and red lines are divisors D1 and D2 respectively. The new polynomial b(x)

is represented by the green curve. It intersects the hyperelliptic curve at six points in-

cluding P1 and P2 of D1, Q1 and Q2 of D2 and the new points R1 and R2. Then we can

calculate the opposites of these new points and get R̃1 and R̃2 respectively. The new

curve (magenta) is the resultant divisor.

Example 40. We will see a more concrete example. Let us take a hyperelliptic curve of

g = 1 which is an elliptic curve. How is the addition done in that case. As the genus is

one, the reduced divisor is nothing but a single point P and also the multiplicity cannot

exceed one. So our D1 and D2 are nothing but two points P and Q.

y2 = (x − 2)x(x + 4)

We have the elliptic curve with points P and Q to be added together. We find out a

line(curve) passing through them. This new line passes through the point R. Now we

take the reflection of R on x-axis. The reflection R̃ is the sum of P and Q.

The group law is depicted in the second picture in Figure2.2.

2.6.3 Algebraic methods

In the last section we got a feel of how to add divisors. In the case of elliptic curves

it was very easy. But in the general case, drawing a curve is not an easy thing. What

we can do is that algebraically find out the equation of the curves/divisors. This is not

very difficult. In fact, we can use the representations we saw in the last section. The one

which is most popular is Mumford representation. The polynomials a(x) and b(x) have

all information about the divisors. Also there is a method which uses Chow forms.

Cantor’s Algorithm

In 1987 Cantor [Can87] came up with an algorithm for the addition of reduced divisors

of hyperelliptic curves. The algorithm is known as Cantor’s algorithm. As we have two
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Figure 1: Addition of divisors in hyperelliptic curves
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phases for addition of divisors, the algorithm also has two phases. Cantor’s method

uses Mumford representation.

1. Composition : This is the phase in which we find out the new divisor which is the

sum of the input divisors.

2. Reduction : In this phase we prune out the parts which are not needed and take

the inverse of the resulting one to get the result.

Composition

• Input: Reduced divisors D1 = div(a1, b1) and D2 = div(a2, b2) both defined over k.

• Output: A semi-reduced divisor D = div(a, b) defined over k such that D ∼ D1 +

D2.

1. Use the extended Euclidean algorithm to find polynomials d1, e1, e2 ∈ k[u] where

d1 = gcd(a1, a2) and d1 = e1a1 + e2a2

2. Use the extended Euclidean algorithm to find polynomials d, c1, c2 ∈ K[u] where

d = gcd(d1; b1 + b2 + h) and d = c1d1 + c2(b1 + b2 + h)

3. Let s1 = c1e1, s2 = c1e2 and s3 = c2, so that

d = s1a1 + s2a2 + s3(b1 + b2 + h) (2.6)

4. Set

a = a1a2 = d2 (2.7)

b =
s1a1b2 + s2a2b1 + s3(b1b2 + f)

d
mod a (2.8)

Again, I am not providing the proof. In fact, the proof given by Cantor contained a

few errors and later when Koblitz gave the algorithm, he did not give any proof. But

for the proof, readers can refer [Kob98, Can87, MWZ96].
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Reduction

Reduction part is comparatively simpler and easy to understand. Here also we skip the

proof - for details [Kob98, Can87, MWZ96]. But here, the algorithm is pretty clear that

no one needs a proof to see that it is indeed correct.

Input: A semi-reduced divisor D = div(a, b) defined over k.

Output: The (unique) reduced divisor D′ = div(a′, b′) such that D′ ∼ D.

1. Set

a′ = (f − bh − b2)/a (2.9)

b′ = (−h − b) mod a′ (2.10)

2. If degx(a
′) ≥ g then set a ← a′, b ← b′ and go to step 1.

3. Let c be the leading coefficient of a′, and set a′ ← c−1a′

4. Output(a′, b′).

Other versions

As we told in the introduction, we are looking for faster addition in the jacobian of

hyperelliptic curve. The method given above is a polynomial time algorithm. But when

it comes to the number of micro-instructions needed in a processor, this version of the

algorithm is too general to implement. So we have many different refined version of this

algorithm or slight variants of this algorithm which is tailor made for different genus

hyperelliptic curves.

Harley’s Algorithm

In the year 2000, Rob Harley [Har00] came up with an algorithm which is very similar to

the original Cantor’s algorithm. The algorithm was optimised and made for genus two

curves [GH00]. In the tailor made method for genus two curves, addition and doubling

are handled separately. Finally the number of operations comes up to two inversions,

three squarings and 24 multiplications for the genus 2 case.
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Explicit formulae by Tanja Lange

In her paper in 2002, Tanja Lange [Lan02] gives explicit formulae for arithmetic on genus

two curves over fields of even characteristic and for arbitrary curves. The formula is

faster than all the methods which existed before that. It allows to obtain fast arithmetic

on hyperelliptic curves of genus 2. The algorithm is a case by case analysis of different

situations which can arise.

2.7 ECDLP and HECDLP

In the earlier section 2.1.2, we saw that, in the multiplicative group Z
∗
p, the discrete

logarithm problem is: given elements r and q of the group, and a prime p, find a number

k such that r = qkmod p.

In the previous sections we also introduced new types of groups: the groups of

points on the Jacobian of hyperelliptic curves. It is also to be noted that elliptic curves

are hyperelliptic curves of genus 1. They also have a jacobian and the jacobian is simply

the group of points on an elliptic curve. The main advantage of these groups - the

points on an elliptic curve or the jacobians of hyperelliptic curves - compared to the

multiplicative groups of finite fields, is that under certain conditions, there is no method

like index calculus known to solve the DLP. If the groups are chosen with care, then the

most efficient way to solve the DLP is by means of Pollard’s rho method [Pol78].

For this method, one has to perform roughly
√

#J group operations. This means

that its running time is exponential in lg #J , and one can use smaller groups for achiev-

ing the same level of security.

2.7.1 Elliptic Curve Discrete Logarithm Problem

The points on an elliptic curve form a group under addition. The elliptic curve dis-

crete logarithm problem could be defined as: given points P and Q in the group, find a

number that k · P = Q; k is called the discrete logarithm of Q to the base P .
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Example:

In the elliptic curve group defined by

y2 = x3 + 9x + 17 over F23

What is the discrete logarithm k of Q = (4, 5) to the base P = (16, 5)?

In comparison with the example given in section 2.1.2, one can already see that

this question is very hard.

The (naive) way to find k is to compute multiples of P until Q is found. The

first few multiples of P are:

P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P =

(7, 3); 7P = (8, 7); 8P = (12, 17); 9P = (4, 5)

Since 9P = (4, 5) = Q, the discrete logarithm of Q to the base P is k = 9.

In a real application, k would be large enough such that it would be infeasible to

determine k in this manner.

2.7.2 Hyperelliptic Curve DLP

As the name itself indicates, HECDLP is the general version of ECDLP. Unlike having

the points on the curve, which is used in ECDLP, HECDLP depends on the group of

reduced divisors for defining the DLP.

The hyper elliptic curve discrete logarithm problem could be defined as: given di-

visors D1 and D2 in the group, find a number that k · D1 = D2; k is called the discrete

logarithm of D2 to the base D1.

As mentioned earlier, the main advantage of HECDLP is the lack of existence of

any sub-exponential algorithms to solve it. With today’s computers it is reasonable to

assume that it is unfeasible to perform 280 operations in a reasonable amount of time.

Under this assumption, it follows that cryptosystems based on elliptic or hyperelliptic

curves are secure if #J ∼ 2160. As a consequence, these systems are more efficient, and

allow shorter key sizes than their multiplicative group counterparts. The details of the

sizes needed were explained in Table 1.1.



Chapter 3

The State Of The Art

“Do not worry about your difficulties in Mathematics,

I can assure you, mine are still greater.

- Albert Einstein.

In the previous chapter, we saw how the points (or divisors) of a hyperelliptic can

form a group, which is called the jacobian of the curve. We also did see that the count

(cardinality) of this group is vital in deciding the level of security the curve can offer.

In this chapter, the methods which already exist for calculating the order of groups are

sketched.

We will start by examining the algorithms which can be used for generic groups

and then observe how these algorithms are tailor suited for the special cases of jaco-

bian. Counting methods which leverage the properties of hyperelliptic curves also are

explained.

A note on notation: All through this chapter, G is the group of which the order is to

be computed; M is the upper-limit of the order and α is a random element which has

the order N .

3.1 Existing methods for counting

Owing to the property of groups that the order of the group is a multiple of the order of

the elements of the group (or even the same sometimes), the very naive method starts

by finding the order of an element α.

The order of an element is the number for which the exponent of the elements pro-

duces the unit element of the group. So, one starts by finding the exponents of α until

the unit element of the group is produced.

35
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α, α2, α3, . . . αN

Since the order o of the group is the number for which the the N th power of every

element in the group is same as the unit element, quite often the order of an element is

the same as that of a group.

If they are not the same, one could find out the orders of different elements of the

group and find out the least common multiple of them which is either the order of the

group or a large factor of it.

Determining the order of a group (or α) using the above outlined method is very

expensive. The larger the order of α, the more expensive the computation becomes. The

complexity of the algorithm is O(N).

There are two methods which are based on the aforementioned idea, but better in

complexity. The goal of the algorithm is to find an n such that αn = 1G where 1G is the

unit element. So it suffices to find two powers of α which are equal.

If i and j are two numbers for which αi = αj , then we know, αj−i = 1G and that j − i

is the number being sought. It is possible that j − i is not n, but a multiple of n.

3.1.1 Baby Step Giant Step - BSGS

One of the methods which leverages the idea of finding a multiple of α is the baby step

giant step method. It was proposed by Shanks [Sha71] and it finds the order of the

element.

All what is needed is an upper limit of the group order.

Assuming the order of the group is M , the algorithm takes a random α from the

group and computes two sets of its exponents. As the name of the method indicates,

one set is created using baby steps and the other using giant steps.

Baby Steps

Every exponent of α is calculated and stored in a list up to
√

M . Along with the values,

the exponent-value of α is also stored.

This set can otherwise be seen as the set of αk for k <=
√

M .

Giant Steps

Exponents of α is computed for every multiples of
√

M until M . This set is αj for j =

i ×
√

M
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After computing each exponent, it is checked whether the value is present in the first

list created by baby steps. If it is present there, then the result is at hand.

If one of the giant steps is present in the baby steps, the number j and k mentioned

in the previous section is found out.

The algorithm can proceed to compute the N (or a multiple of it) by finding the

difference of the exponents which produced the same value.

Example:

Consider a group, G which has an order close to one million. Using the initial naive

method, one has to compute every exponent of α for all values 1, 2, . . . , 1000000.

In baby-step-giant-step method, one can compute the powers of α as below.

α, α2, α3, . . . α1000

Then, compute and check each of the following until a match is found. The smallest

difference in the powers which give the same exponent would be N .

α1000, α2000, α3000, . . . α1000000

The complexity of the algorithm is O(
√

N) to calculate N .

3.1.2 Birthday paradox method

This method, which is also known as Pollard’s Rho method, is based on the well known

birthday paradox. The idea of birthday paradox is that if we randomly take
√

k elements

from a set of size k, there is a good chance we will pick an element twice1. For more

details, please see [Pol78].

While putting the birthday paradox into use for order computation, we guess a ran-

dom sequence of powers of α and we are bound to have a repetition sooner or later.

The algorithm starts by randomly guessing powers of α, check whether that value

was computed earlier. If it was, the j and k of the previous section are available and

their difference is the order of α. If the power was not computed earlier, it is added to

the list and the algorithm continues.

Just as in the baby-step-giant-step method, the complexity of the algorithm is O(
√

N).

1If there are at least 23 people in a room, the chance that two of them share the same birthday is high
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3.1.3 Order counting with Primorial

In [Sut07], A. Sutherland proposed a method of making the counting of the order of a

group easier, by using some rudimentary facts about groups. In effect, computing the

order relies on Pollard’s methods. But the rudimentary methods help to save resources.

The order of an element of a group is always a factor of the order of the group. If a

rough idea about the upper limit of group order is available, one can carefully choose

an element for which the order has no factors smaller than prime P .

The idea is to start with a random element α, and with M being the upper limit of

the group order. According to the Primorial method, one finds the largest power of 2,

smaller than M - let’s call it k and computes β = α2k

. From the properties of the group,

β has an order which is co-prime to 2.

One can do the same with all prime numbers - 2, 3, 5, . . ..

β = αΠpkp

By computing a β with order coprime to the small primes, in the traditional group

order algorithms, the numbers which are coprime to the product of all the primes can

be avoided and a great saving in time/space is achieved.

3.2 Counting in the Jacobian

If we consider a hyperelliptic curve over R, or even over the complex numbers, it is

meaningless to talk about counting the number of points, because it is infinite.

But once we define a curve over a finite field, the number of points is not infinite

anymore and becomes important because of the application of the curves and the sig-

nificance played by the number of points (order of jacobian).

One could imagine any kind of finite field over which a hyperelliptic curve can be

defined. Let us broadly put them into two classes - fields of characteristic 2 and fields

with an odd prime as the characteristic.

3.2.1 Fields with small characteristic

Many results are available for counting points over finite fields of characteristics p,

mainly with the use of p-adic liftings. The complexity of these methods is exponen-

tial in ln p. Hence for small primes (especially for p = 2) these methods are good. Using

these algorithms, it is possible to compute orders of Jacobian varieties in sizes of cryp-

tographic usage over fields with small characteristic.
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The main result with small fields is available at [Ked01, GG01].

3.2.2 Fields with larger/arbitrary characteristic

The story takes a not-so-happy turn when the counting has to be done over fields of

arbitrary characteristic. There are a few results of which only one is considered to be of

practical use: Gaudry-Harley [GH00, Gau05].

3.2.3 Gaudry-Harley method

The Gaudry-Harley algorithm consists of two main parts. In the first part, details about

the order of the Jacobian is computed based on different results.

The detail which is computed is the residue modulo m,m ∈ Z>0 of the order of

the given jacobian variety. The details of extracting this information is described in the

following section.

Once the residue modulo m is calculated, in the second phase of the algorithm, a

parallelised Pollard’s lambda method is used in finding the number which matches

the acquired information and also the properties of the group order. This square root

algorithm was taking the lion’s share of computing resources in the Gaudry-Harley

algorithm.

The initial part of the algorithm, where the residue modulo m details are computed,

has two smaller sections.

Cartier Manin

For hyperelliptic curves, the characteristic polynomial of the Frobenius modulo p is con-

nected with the Hasse-Witt matrix of the curve. The g × g matrix (Hasse-Witt) can be

computed using the following result.

Theorem 41. Let y2 = f(x) represent a hyperelliptic curve with genus g. Let the coefficient of

xi in the polynomial f(x)
(p−1)

2 be represented by ci. Then the Hasse-Witt matrix is given by:

A = (cip−j)1≤i,j≤g

In [Man65, GH00], the above result is connected to the residue modulo p of Frobe-

nius. For a matrix A = (aij), let Ap be the element-wise pth-power. i.e., (ap
ij).

Theorem 42. Let C be a curve of genus g defined over a finite field Fpn . Let A be the Hasse-

Witt matrix of C, and let Aφ = AAp . . . A(pn−1). Let k(t) be the characteristic polynomial of the
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matrix Aφ, and χ(t) the characteristic polynomial of the Frobenius endomorphism. Then

χ(t) ≡ −1gtgk(t) mod p

Armed with this knowledge, it is straight forward to compute χ(t) modulo the char-

acteristic p and hence #J(Fq) mod p. One must notice that this method would be feasible

only for not too large p. In practice, any p > 1000000 is too expensive.

This is a very efficient way of knowing about the Jacobian order, for moderately large

p.

Schoof’s Improvement

A detailed explanation of Schoof’s method (extended by Gaudry) is beyond the scope

of this thesis. A more interested reader is recommended to read [Kam91, Pil90].

In a nutshell, the hyperelliptic analogue of Schoof’s algorithm2 is about computing

χ modulo l for small primes. Once this has been done for sufficiently many primes,

Chinese remainder theorem [Knu97] is used to compute χ. From the bounds which

were mentioned above, the primes are bounded by l = O(lg q).

For the methods of computing χ mod l, the reader is encouraged to peruse [Kam91,

Can94].

Modified Pollard’s Lambda

From the Cartier Manin operator and Schoof’s method, different details of o(J) is com-

puted as o(J) ≡ n1 mod p, o(J) ≡ ni mod lki , for l = 2, 3, 5, . . ., k ∈ Z.

Using Chinese remainder theorem the aforementioned information is combined to

o(J) ≡ n mod m where m is the product of p and all values of lk.

The birthday paradox algorithm which was mentioned earlier in the chapter can be

modified to avoid computing the values which are not in the form of n mod m. Using

the modified algorithm, computing resources can be saved up to an order of
√

m.

For further details, see [GH00]

3.3 Can this be improved?

So far in the thesis, we discussed about the counting in the Jacobian of hyperelliptic

curves of genus 2. In this section, we give a more clear description of our goal.

2Originally designed for elliptic curves
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In section 3.2.3, we saw the state of the art methods for generic curves. It was also

seen that the running time of the algorithm is too long to have any practical use in cryp-

tosystems. We also have seen a few of the generic methods of group order counting.

The goal of this thesis is to bring the best out of the both the worlds. i.e., to try to ap-

ply the advances of generic group order counting in the special setting of hyperelliptic

curves, where one has the advantage of

• Weil Interval

• Cartier Manin operator

• (modified) Schoof’s method

The details of how they can be applied together are explained in the next chapter.

The next chapter also shows what an improvement is achievable.



42 CHAPTER 3. THE STATE OF THE ART



Chapter 4

The Solution

“The art of doing mathematics consists in finding that special case

which contains all the germs of generality.”

- David Hilbert

In this chapter, we develop a faster method for counting in the jacobian of hyper-

elliptic curves (of genus 2). Starting with the naive solution which tries to apply the

Primorial method [Sut07] in the jacobian, the chapter witnesses the gradual develop-

ment of an algorithm which combines all the special knowledge available (about the

jacobian).

The final algorithm has an improvement factor of ϕ(P )
P

1 over the conventional method.

Even though the computational complexity of the algorithm is the same as the tradi-

tional one, the improvement is a quite good, in computing in the jacobian of practically

useful hyperelliptic curves2.

A note on notation: In this chapter, P is the Primorial (multiple of primes up to p),

and T is the totient of P , m is the characteristic of the field on which the curve is defined.

The variables w, l and u represent the Weil interval, its lower and upper boundaries -

respectively. #J stands for the size of the jacobian.

1where P is the product of the first p primes. The value of p depends on the size of the jacobian
2In this chapter, a hyperelliptic curve (of genus two) which is practically applicable is assumed to be

on a field of size 280 which in turn means, the size of the jacobian is ∼ 2160 and size of Weil interval is
∼ 2120.

43
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Size(crv) Size (Jac) P Reduction P
ϕ(P )

Speed-Up
√

PP
ϕ(PP )

Work % Days (7 × %)

10 20 11 4.812 2.193 45.584 3.190
20 40 17 5.539 2.353 42.488 2.974
30 60 29 6.331 2.516 39.742 2.781
40 80 31 6.542 2.557 39.096 2.736
50 100 41 6.892 2.625 38.091 2.666
60 120 47 7.209 2.685 37.242 2.607
70 140 59 7.474 2.734 36.576 2.560
80 160 67 7.714 2.777 36.003 2.520
90 180 71 7.824 2.797 35.748 2.502

Table 4.1: Improvements for different curves.

4.1 Primorial Vs Weil

Counting in the jacobian (of hyperelliptic curves) is easier than the counting in any other

group of similar size, primarily owing to the knowledge of the search intervals.

But the traditional algorithms and the Primorial method, which we have in hand, are

not fine tuned for searching in intervals. So, the naive attempt could be the application

of the Primorial method to see whether the improvements promised by it would be

good enough to surpass the benefit of Weil’s interval.

A hyperelliptic curve defined over a field of size q has a jacobian of the size compa-

rable to N = q2. Using the traditional methods of counting implies that the search has a

complexity
√

N = q. See [GH00].

Using the Primorial method, one can avoid a large share of the search space. Ta-

ble 4.1 gives an idea of how much improvement in search can be achieved for different

sizes of groups. The sizes (represented in bit-size) are of the field over which the curve

is defined and the jacobian respectively.

The last column is the number of days needed for the algorithm to finish running,

assuming that the non-Primorial version would need a week (7 days) to finish.

The size of the Weil interval is of the order of q1.5 for genus 23. So, Weil interval is a

very small fraction (q
−1
2 ∼ 2−40for a practically useful curve) of the whole jacobian of a

hyperelliptic curve, where as the Primorial savings is of the order of less than 65%.

Naive Primorial reduces the search space to two thirds, where as the whole Weil-

interval itself is one in 240th of the Jacobian. Therefore, the naive method of trying to

apply the Primorial method directly on the whole jacobian of a curve is extremely more

expensive than using the Weil knowledge.

3The weil interval is specified as ⌈(√q − 1)2g⌉ ≤ #J(Fq) ≤ ⌊(√q + 1)2g⌋. For more details see 2.5.2
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4.2 Primorial and Weil

Since the naive method of applying the Primorial directly on the Jacobian is not very

promising, the advantage of Weil’s interval has to be taken into consideration.

Note: Primorial method only guarantees that the order of the chosen (created)

element is co-prime to the selected primes (Please see 3.1.3). The order of the

group is a multiple of this order and need not be co-prime to the primes chosen.

Instead of the naive method of searching in all over the jacobian, the search has to

be modified to specific intervals inside the jacobian.

1. The Weil interval [l, u] is initially searched for the element order. There search

would be successful only if the group order is the same as the order of the element,

or the group order is a product of the order of the element and a number which is

co-prime to the Primorial4.

2. Since the order of the Jacobian is sure to be within the Weil interval and since

the order of the divisor has to be a factor of it, if the order was not found in the

case above, we can avoid the searches is such ranges where the order cannot be

present and move on to the intervals where the probability of finding the order is

non-zero.

For example, the range [wu

2
, wl] is sure not to have the order - because no multiple

of any number in that interval is within the Weil interval.

So, if the order was not found in Weil interval, the search has to continue to
w
2
, w

3
, . . . = [l, u], [ l

2
, u

2
], . . .. until the order of the element is found.

Considering the search spaces as described above, the counting algorithm has to

look in a set of special intervals (defined by Weil interval). Which in other words mean

that set of intervals could be skipped while doing BSGS. The following set contains all

such intervals.

{[
l

i
,

u

i + 1

]
| 1 ≤ i < r =

u

w

}

The remaining search space - from 1 to wu minus the above set, will provide us with

the size of the real search space.

4While using the primorial method, the orders computed are coprime to the primorial. Order of the
element is assured to be coprime to the primorial. If the order of the group is a multiple of the order of the
element, the multiplier has to be coprime to the primorial, otherwise it would never have been computed.
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S =
u

1
− l

1
+

u

2
− l

2
+ . . . +

u

r
− l

r
+

u

r + 1

=
w

1
+

w

2
+ . . . +

w

r
+

u

r + 1
= S1 + S2

> w

[
1 +

lg r

2

]
+ S2

= w

[
1 +

lg q
1
2

2
− 3

]
+ S2

4.2.1 Put in perspective

From the above equation, if we calculate the search space S, that will be S = 19w + S2.

As mentioned in the previous section, even for large primes (the ones used for Primorial

at cryptographic sizes, usually less than 67), the factor c = ϕ(p)
PP

is about than 0.25

Using the Primorial advantage along with the reduced search space, the resulting

search space would be f · S = 4.95 · w + 0.25 · S2. This value is definitely larger than w,

the Weil interval.

From this, it is clear that there is no advantage of using the Primorial method, if we

know a small interval where we expect the order to be present.

Using Primorial method along with Weil interval is actually more expensive than

the method without Primorial. This arises from the fact that a non-Primorial method

has to do the search only inside the Weil interval, where as Primorial method needs a

search outside the interval.

4.3 Including Cartier Manin operator

Using the Cartier-Manin operator (see 3.2.3 and [Man65]), some more details of the

group order can be obtained, provided the characteristic of the underlying field is not a

very large prime number5.

The group order can be represented in terms of m, the characteristic of the field as

follows:

#J = Nr mod m

5Any prime larger than 106 is considered too large.
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As the original Primorial method avoids making the (computing the) unnecessary

babysteps or giantsteps based on the knowledge of co-primeness of the order to initial

primes, a new method could incorporate this special knowledge above for avoiding the

computation of baby/giant-steps which are not of the form as in the equation above.

The method to find out the jacobian using baby-step-giant-step method is sketched

as Algorithm 1.

Algorithm 1: Compute Jacobian order: Cartier Manin and Primorial BSGS

Data: J , w, wl, wu, m, Nr, α - random element of J
Result: #J - Order of the jacobian
begin

Nr ←− CartierManinOn(J,m);
p, P ←− BestPrimorial(w,Nr);
T ←− BestLimitBabies(w,Nr, P );
β ←− DivisorWithSpecialOrder(α, p);

* Generating the babysteps *;
B0 ←− {k · m − Nr | 0 < k ≤ (1 + T/m)};
B1 ←− {j ⊥ pp | j ≤ T, j ∈ Z

+};
B ←− B0 ∩ B1;
Babysteps ←− ∅;
for x ∈ B do

Babysteps ←− Babysteps ∪ {x · β};
end

* Generating giants and checking against babysteps *;
Giants ←− {g | wl ≤ g ≤ wu; m,T divides g};
for x ∈ Giants do

if x · β ∈ Babysteps then
#J ←− ComputeDifference(x,Babysteps) ;

end

end
return #J

end

Details of Functions

In the algorithm 1, there are some functions which are not yet been well defined. A

description of each of them is given below. The functions being standard and straight-

foreward, the pseudo-code for the same are avoided.

CartierManinOn(J,m): As described in section 3.2.3, the CartierManin operator can
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be used to find the remainder of #J when divided by m, the characteristic of the

field. Please see [Man65] for further details.

BestPrimorial(w,Nr): Once the values of Weil interval and the special knowledge of

#J are obtained, the best prime number for the algorithm can be decided. This

function is explained below.

BestLimitBabies(w,Nr, P ): The number of babysteps and giantsteps are defined by up-

per limit of the babystep. This function finds out the optimal value of the limit,

based on the available inputs.

DivisorWithSpecialOrder(α, p): The element which is to be used for baby-steps and

giant-steps has to meet the requirement that its order should be co-prime to the

Primorial (i.e., co-prime to each of the prime numbers ≤ p). To compute such a

divisor, β, a random divisor is chosen and it is exponentiated to all the powers of

the prime numbers in question. For more details, see section 3.1.3 or [Sut07].

4.3.1 The Cost - Reduction and Estimation

Like the traditional BSGS, the cost is based on the number or babysteps and giantsteps

to be made before the order can be computed. The best result is achieved when these

two numbers are roughly the same. See [Coh96].

The cost can be found out by looking at the two functions which are mentioned

above.

BestPrimorial(w,Nr): It would seem that the larger the size of the Primorial, the lesser

the number of computations needed. But the increase in the size of the Primorial

is advantageous to the computation only up to a limit. And this limit depends on

the size of the search space. In the normal scenario, where the restriction of Nr is

unknown, the optimal value of Primorial is the one closest to
√

w · P
ϕ(P )

, which is

also used as the upper bound of baby steps. See [Sut07].

But with the introduction of Nr, the number of babysteps in the same interval is

reduced by a factor of Nr, where as the number of giantsteps remain the same.

To share the advantage of Nr between the babysteps and giantsteps equally, the

optimum value of the Primorial moves higher by a factor of
√

Nr.

Hence, the optimal value of Primorial would be the Primorial closest to
√

w · P
ϕ(P )

· Nr

BestLimitBabies(w,Nr, P ): Once the best Primorial has been established, computing

the upper-bound is all what is needed for starting babysteps. Looking at the gi-

antsteps, one can see that the giantsteps has to be divisible by m because of the
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properties of babysteps. Each giantstep has to be also divisible by the upper-

bound. Hence, the upper-bound shall be a multiple of m. Now with this knowl-

edge, the upper-bound can be fixed as the multiple of m closest to the optimal

Primorial which was computed in the previous step.

Improvement from traditional methods

In terms of complexity of the methods, the use of CartierManin or Primorial has not

reduced the complexity from O(N
1
2 ). But by the reduction in the number of steps,

the employment of both Cartier Manin and Primorial methods provides a reduction

of
√

m · P
ϕ(P )

in the computations.

Proof

Using the Cartier Manin operator reduces the size of search space by a factor of m, the

characteristic of the field over which the curve is defined. As the complexity of the

algorithm is O(
√

n), an speed up of
√

m is attained.

While using Primorial, only those numbers which are co-prime to P are used for the

baby-steps or for giant-steps.

The number of numbers co-prime in every P numbers is ϕ(P ). In the Weil interval,

there fore the total number of giant-steps + baby-steps is reduced by another factor of√
ϕ(P )

P
.

Therefore, both the methods of CM and Primorial gives a speed increase of
√

m · P
ϕ(P )

4.4 Including Schoof’s improvement

In this section and the following section, we will see the final products of this thesis. In

this section, we work on improving the counting method by incorporating the details

obtained by Schoof’s method in knowing some more information about the Jacobian

order.

For further details on Schoof’s method, please see [Sch95, Can94].

Schoof’s method provides information about the jacobian in a similar fashion like

Cartier Manin.

#J = ns mod 2k · l
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Where l is the product of initial primes up to p1. Usually, in practice, the value

of p1 is less than 17, for the reason that computation of modulo p becomes expensive

exponentially. Details of the computation could be seen at [GH00].

So, the details of the order of the jacobian available are as below.

#J = Nr mod m

#J = ns mod 2k · l
#J ⊥ P

Using Chinese Remainder Theorem [Knu97], the first two of the modulos can be

combined as follows.

#J = n mod m · 2k · l
#J = NmodM

Even with the additional Schoof’s method, one can re-formulate the counting prob-

lem in a way similar to how it was when only Cartier Manin operator was used, which

is helpful in using the same (or slightly modified) method, provided the new problems

are ironed out.

4.4.1 The trouble introduced

Before the introduction of modulo by Schoof, the modulo and the Primorial were co-

prime6. In fact, the common factor of m, Nr and P was 1, before the introduction of

Schoof’s method.

But if the common factor d is not 1, then no single integer in the Weil interval which

satisfies the modulo would be coprime to the Primorial, P . In the last section, where

CartierManin operator was used, there is a subset of integers which satisfy the modulo

which are not coprime to P .

6m is a large prime number and P is the product on initial primes
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4.4.2 The algorithm

In a nutshell, the solution tries to generate babies and giants which satisfy the conditions

and produce the results. But the names shall not confuse the reader, and make her think

that babysteps always have to be first. In our solution, we are generating the giants

steps initially and the babysteps are made to match the giantsteps stored.

An optimal value for the size of the giant step is computed using the available values

of Primorial and the m. Using this value, the giantsteps are made in the Weil-interval

and are saved. As the next step, the babysteps are produced. Unlike in the earlier cases,

where we suggested searching in the small intervals if the searched value was not found

in the original one, here we suggest to adjust the value of the Primorial to accommodate

the generation of more babysteps - which is the equivalent of going to lower-intervals7.

The method mentioned above is sketched in Algorithm 2.

Details of Sections of the algorithm

As mentioned above, the algorithm has 3 sections which are explained here one by one.

Choosing the optimal giantstep size

Similar to what we saw in the previous algorithm, the introduction of Cartier

Manin results and the Primorial values reduces the search space by a large fac-

tor. Schoof’s method throws new light to the Jacobian order, thereby reducing the

search space further8.

The reduction of the space by a factor k directly implies that the size of the gi-

antstep would be
√

k times larger than the traditionally optimal size.

But, the size of the giantstep has to be a multiple of P and also m (m in #J =

n mod m), for the babysteps are going to be of the form P⊥b = l ·m − n, for l ∈ Z.

Considering these two restrictions, one has to choose, g, the size of a giantstep

as close as it can be to
√

w · k, where w is the size of Weil-Interval; where g is a

multiple of m and P .

As shown in the code, we choose the Primorial chosen for a case without Schoof’s

and CM information available, and remove the larger primes until the size of the

giantstep is in the neighborhood of the optimum size.

7The reader would note that, since the giantsteps are made initially and stored, it would be a waste of
resources to make another set of giantsteps for every “miss” in the search interval

8Reduction in space does not imply that the size of the interval has become less, but that many of the
integers in the interval can be excluded from the potential candidates for group order
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Algorithm 2: Compute Jacobian order: Cartier Manin, Schoof and Primorial BSGS

Data: J , w, wl, wu, m, Nr, p, P , α - random element of J
Result: #J - Order of the jacobian
begin

Nr ←− CartierManinOn(J,m);
p, P ←− BestPrimorial(w,Nr);
T ←− BestLimitBabies(w,Nr, P );
β ←− DivisorWithSpecialOrder(α, p);

* Find the optimal Giant Size *;
while True do

lpm ←− lcm(pr,m);
g ←− Multiple of lpm after

√
w;

opt ←−
√

w·pr·m

ϕpr
;

if g too larger than opt then
Remove the larger primes one by one;

else
Be satisfied with it, BREAK;
break;

end

end

* Generating giants steps *;
Giants ←− {gi = g · i | wl ≤ gi ≤ wu; i ∈ Z};

* Generating the babysteps *;
Primes = {All primes inpr};
foreach i < g do

if i⊥pr and i = nmodm then
Result ←− CheckBabyStep(i, Giants);
if Result then

return Result
end

end

end
foreach pi in Primes do

prx ←− pr

pi
;

foreach i < g do
if i not checked yet & i⊥prx & i = nmodm then

Result ←− CheckBabyStep(i, Giants);
if Result then

return Result
end

end

end

end
end
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Loop Hole: The while loop could be infinite.

The algorithm has a while loop which seemingly runs into an infinite loop. But

here is the proof that it will terminate, where the worst case is P being reduced

to 1.

As the primes are removed one by one, the size of the suggested value would

get closer to the optimal value and finally up to the next multiple of m larger

than the optimal value which has to be set as the safe-neighborhood for satis-

fying the condition to break out of the loop.

Generation of Giantsteps.

This section of the algorithm is the easiest but the more space consuming one.

Once the size of the giantstep has been fixed up on, the algorithm can compute

the giantsteps between the Weil-Interval.

It is worth noting that unlike the traditional babystep-giantstep algorithm, giants

are generated and stored for further searches. This of course comes with the dis-

advantages of having multiplications with larger multipliers.

All the giantsteps are multiples of P and also m.

Generation of Babysteps.

The babystep generation is worth noting because of the different sweeps through

the giantstep space for completely generating them, instead of doing them in a

single sweep.

In the initial sweep, the steps which are coprime to the Primorial are chosen to be

generated and compared against the giantsteps in the store. This is the equivalent

of searching for the the order of α, the random element inside the Weil-interval.

To be precise, the babysteps which are of the form l · m − n, which are coprime

to the Primorial P are computed. Since the giants are all multiples of P and m, if

the order happens to be in Weil-interval, there will be a match between one of the

babysteps and one of the giantsteps.

It is worth observing that, a match in the first sweep means the order of the

group is the same as the order of α, the element in question.

Once all the potential candidates, which are coprime-multiples of α, are generated

and checked against the giantsteps, and if it leads to no match, the implication is

that the order of the element is a factor of the group order.
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Then the algorithm proceeds to explore the intervals where the order of the ele-

ment is in the intervals w
2
, w

3
, . . .

This is achieved by taking off the primes from the Primorial one by one and gen-

erating the babysteps which are coprime to the new Primorial, and which are not

generated in the earlier sweeps.

This process continues until the Primorial becomes one - which is falling back to

the normal babystep-giantstep algorithm.

4.5 Proof

The proof of the algorithm explained above needs two sections: (i) It terminates and

(ii) It finds the right solution.

4.5.1 The algorithm terminates

The algorithm has three loops of which one is seemingly an infinite loop. In the above

section, we saw that the loop which seems an infinite loop does terminate in all cases.

The second loop in the algorithm is for the generation of the giantsteps. It exe-

cutes exactly w
g

, where w is the size of the Weil-interval and g is the size of the optimal

giantstep-size determined.

The third section of the algorithm makes l sweeps through the whole interval [1, g]

where g is the size of the optimal giantstep-size, which guarantees that the algorithm

terminates. (Where l is the number of primes in the Primorial)

4.5.2 It gives the deemed result

To prove that the algorithm gives the deemed result, two points are to be noted.

• Irrespective of the value of the optimal giantstep-size, the algorithm creates w
g

gi-

antsteps in the Weil-interval.

• Through the l sweeps through the interval [1, g], the algorithm generates all the

babysteps which satisfy α × (k · m − n).

Considering that all the babysteps up to g are checked against all the giantsteps

which are separated by g in the Weil-interval, a match is sure to occur between one of

the babysteps and one of the giantsteps.

The details of the proof is the same as in section 3.1.1.
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4.6 Cost analysis

The cost of the algorithm is the number of group operations required for computing the

size of the group order. The number of operations required is the sum of the number of

giantsteps and of babysteps made during the computation.

Let the size of the giantstep be:

g = c ·
√

w · P · m
ϕ(P )

Where c is the constant which decides the optimum value.

This implies that the number of giantsteps be:

#g =
w

g
=

1

c
·
√

w · ϕ(P )

P · m

For the number of babysteps, we could consider the best and worst cases.

Best Case

In the best case, the order of the element is a non-trivial factor of the group order, which

means the first sweep of babysteps would get a match from the giantsteps.

Which means, the number of operations = g·ϕ(P )
P

.

Therefore, the number of operations would be of the order of O(
√

w·ϕ(P )
P ·m

).

Worst Case

In the worst case, the order of the element is a very small factor of the group order,

which means that the number of sweeps of babysteps is l, the number of primes in the

Primorial.

This implies that the number of operations = g which is of the order of O(c ·
√

w·P ·m
ϕ(P )

).

The constant c could be leveraged to adjust the value of g.

A value c = ϕ(P )
P

makes sure that the worst case is always better than the Schoof-

CartierManin method without the use of Primorials.
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4.6.1 In practice

In the case of jacobians and their elements, an average case could not make sense. But

from the above discussion confirms that the algorithm2 has a better running time than

the Schoof-CartierManin algorithm. Please see [GH00].

Where as the best case saves up to 60% of the work (For details of percentage savings,

please refer to table 4.1).

In the next section, the above algorithm will be applied in the cryptographic setting

where one could make sure that the best case of the algorithm would only be put to use.

4.6.2 In theory

The improvement which algorithm promises is in terms of the order P , but not in terms

of the size of the field on which the hyperelliptic curve is defined. Even though the size

of the Primorial depends on the size of q, it is very weakly related and is not strongly

coupled to make a polynomial difference in the cost.

At the same time, the introduction of the Primorial method provides with an im-

provement factor of
√

P
ϕ(P )

, which ranges from 2 to 3. To know what percentage of

change it would make, please see table 4.1.

4.7 Cryptographic restrictions

All through the previous sections in this chapter, we examined the different cases of

using the available information about the jacobian order, in finding out the order of any

arbitrary hyperelliptic curve.

In the last section (Section 4.4), it was even shown that the combination of the avail-

able information can be leveraged to design an algorithm (Algorithm 2) which substan-

tially reduces the cost.

In this section, we will look at the requirements of a cryptosystem, for guaranteeing

security on the forms of protocols/methods it offers. In section 2.7, we saw that the

jacobian offers no sub-exponential algorithms for the solution of DLP defined on it. This

statement is true only for those curves which are of genus less than 3. Please see [SV].

Even though there aren’t any sub-exponential algorithms, there are some attacks

which have been developed for breaking the cryptosystems based on hyperelliptic curves.

Here in the rest of the section, we shall see the effective ones among them, which are re-

lated to the order of the group and we shall see what kind of countermeasure is applied

to get around these problems.
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Pohlig-Hellman

If the group order #G of G factors as Πri
ei then it is possible to reduce the DLP in

G to a DLP in subgroups of order ri, see [PH78]. So if r is the largest prime divisor

of #G, then the DLP in G is as hard as the DLP in the subgroup of order r. For

this reason it is important to choose G such that its order is almost prime, i.e. such

that #G

r
is small. A typical choice is to require that this quotient is ≤ 4. Ideally,

one would like #G to be prime, but it is not always possible to achieve that. For

example, an elliptic curve, or hyperelliptic curve of genus 2 over a field F2l , that is

not super-singular always yields a group of even order.

MOV and Frey-Rück Attacks

Let r be the largest prime divisor of the group order #G. Let k be the smallest

positive integer such that r | qk − 1. Then there is a computable injective group

homomorphism from the order-r subgroup of G to F ∗
qk , see [9] and [31]. If k is too

small, then one can solve the DLP in G by first mapping it to F ∗
qk , and use index

calculus there. So one should avoid groups for which k is small. Typically, k > 20

is a safe choice. A random curve is very unlikely to yield a group for which k is

small. There is however a special class of curves, super-singular curves, for which

k is always small.

Anomalous curves

If the largest prime divisor r of #G is equal to the characteristic of Fq, then one

can transform the DLP to a DLP in the additive group of Fq, where it is trivial to

solve. See [42] and [38]. So this should be avoided.

Weil restriction and cover attacks

Let C be an elliptic curve or hyperelliptic curve of genus g defined over an exten-

sion field Fqe . Let G be the group C(Fq) if C is elliptic, or JC(Fq) if C is hyperellip-

tic. Then sometimes it is possible to find a curve X defined over Fq such that there

is a homomorphism from G to JX(Fq) that transfers the DLP from G to JX(Fq). If

the genus of such an X is not much bigger than e · g, then index calculus methods

on X enable one to compute the DLP faster than with Pollard’s rho method. The

original idea behind this construction goes back to Frey, and it has been applied

successfully to attack several curves, for the first time in [10].

4.7.1 Good curves

To summarise which curves are safe to use, here is the list of the required properties. Let

q be either a prime, or q = 2l, with l prime. Let C be an elliptic curve or a hyperelliptic
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curve of genus 2 over Fq. Let G be the associated group, i.e. G = C(Fq) or G = JC(Fq).

Let r be the largest prime divisor of #G. Then we require

1. r does not divide q

2. If k > 0 is the smallest integer such that r | qk − 1 then k > 20.

3. r > 2160

4. #G

r
≤ 4.

In order to check these requirements, one needs to be able to determine #G. For the

employment of a cryptographic system, one only has to find one good curve. The point

counting only needs to be done in the initial set-up of the system. Once one has a safe

curve, it can be used as long as no attack is known on that specific curve. The curve, and

the size of the group are not part of the keys of the cryptosystem, so even if a number

of secret keys are revealed, it does not jeopardise other secret keys. Therefore, one can

use standard curves, for which the cardinality of G has already been determined.

4.8 Applying the restrictions

In the last section we saw the restrictions which are put on the order of a curve, if it

has to be suitable to be used for building a cryptosystem. Looking in that light, there

is one of the restrictions/conditions which can be used directly in improving the order

counting algorithm we saw earlier.

Let us recap the restriction/condition 3: The largest divisor of the group order has

to be larger than 2160. This extra knowledge can be made use by searching only above

this limit.

In the algorithm 2, the search is initially for the order of the random element, α

which is the same as the order of the group. Once the whole Weil-interval is searched

for a value satisfying that, and if it turns out to be failure, then the algorithm knows that

the order of the element is a non-trivial factor of the order of the group and proceeds

to search for o(α) in the interval w
2
, w

3
, . . ., by removing the prime numbers one by one

from the Primorial.

But with the new light of restriction, the algorithm could search in the Weil-interval

and its subsequent fractions, only until the Weil-interval fraction is still above 2160.
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4.8.1 Some facts

A hyperelliptic curve which could be used for cryptographic purposes satisfies the fol-

lowing.

• The field Fq over which the curve is defined is of the order ∼ 280

• The order of the jacobian would be closer to ∼ 2160

• The largest prime divisor of #J has to be larger than ∼ 2160

• Using the Primorial method requires the Primorial to contain primes up to 67 < 26

(please see 4.1)

If the choice of Fq is wisely made, the algorithm from the previous section could be

modified to leverage the facts mentioned above, to decide whether a hyperelliptic curve

is safe for cryptography or not, and if safe, to compute the order of the jacobian.

The tailor-made jacobian counting algorithm can be seen in Algorithm 3.

Details of Sections of the algorithm

The algorithm 3 is the same as the algorithm 2 except for the generation of babysteps.

As in the previous method, the babysteps which are all of the form k · m − n for k a

positive integer and the steps being coprime to the Primorial are generated first.

In the next step, where each prime number is taken away from the Primorial, so as

to check for the order of the element in lower intervals, the algorithm checks whether

the upper limit of the interval is smaller than the restriction set by security measures.

And if it is, the algorithm can specify that the curve is not suited for cryptography

and quits.

4.8.2 Analysis and Advantages

Instead of making l sweeps through the giantstep size, the new algorithm makes only k

sweeps until the kth prime divides the Weil-interval to get an interval which has upper

limit smaller than 2160.

By wisely choosing the field over which the curve is defined, and also choosing the

optimal giantstep size as O(c ·
√

w·P ·m
ϕ(P )

), the number of giantsteps would be:

#g =
w

g
=

1

c
·
√

w · ϕ(P )

P · m
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Algorithm 3: Compute Jacobian order: Cartier Manin, Schoof and Primorial BSGS
- Tailor made for hyperelliptic curves for cryptographic purposes

Data: J , w, wl, wu, m, P , Nr, α - random element of J
Result: #J - Order of the jacobian
begin

Nr ←− CartierManinOn(J,m);
p, P ←− BestPrimorial(w,Nr);
T ←− BestLimitBabies(w,Nr, P );
β ←− DivisorWithSpecialOrder(α, p);

* Find the optimal Giant Size: See 2*;

* Generating giants steps: see 2*;

* Generating the babysteps *;
Primes = {All primes inpr};
foreach i < g do

if i⊥pr and i = nmodm then
Result ←− CheckBabyStep(i, Giants);
if Result then

return Result
end

end

end
foreach pi in Primes do

if wu

pi
lt2160 then

The curve is not suited for cryptography;
Exit the algorithm and choose another Curve;

end
prx ←− pr

pi
;

foreach i < g do
if i not checked yet & i⊥prx & i = nmodm then

Result ←− CheckBabyStep(i, Giants);
if Result then

return Result
end

end

end

end
end
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and the number of babysteps would be:

#b = k · g · ϕ(P )

P · m = c1 ·
√

w · ϕ(P )

P · m
And the cost of the algorithm in terms of the operations needed is #b + #g =

O(
√

w·ϕ(P )
P ·m

).

4.9 Summary

From the beginning of the chapter, where we started with the naive method of counting

in the jacobian of a hyperelliptic curve, we have developed a solution which reduces

the work to a fraction of the search needed by the naive solution.

In our pursuit to better solutions, we did see some solutions which pointed that the

Primorial method cannot be better than the Weil-interval when there are no other extra

information available.

But, the combination of all the information, has made it possible to devise a method

which is better than the solutions which we saw in the chapter 3 “State of the Art”,

where the best solutions which exist till date are mentioned.

Also, by taking into consideration, the restrictions on a group for guaranteeing se-

curity, we designed a tailor-made method for hyperelliptic curves of genus two, for

deciding whether the curve is good for computation or not. That solution has a silver

lining that, the solution gives the jacobian order, only if the curve fits the required pre-

requisites and a large portion of the unnecessary computation is avoided if the curve is

not good enough.

After seeing the theoretical improvement of
√

P
ϕ(P )

, the details of implementation

and results are given in the next chapter.
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Chapter 5

Implementation, Results and Future

Prospects

“This principle is so perfectly general that,

no particular application of it is possilbe”

- George Polya.

The algorithms which were discussed in the chapter 4 were implemented and were

run against the previously-existing algorithms.

In this chapter, we will see the details of the implementation and the results obtained.

We also would look into the future of the research in the direction we are following.

5.1 Implementation

Even though the chapter 4 talks only about the search algorithms, the implementation

of the jacobian counting system required more than just the search algorithms. The

complete implementation was divided into two phases and were run in two different

locations owing to some technical restrictions.

5.1.1 Generating the Curve

The initial phase of the curve consisted of generating enough random curves on random

fields. This phase also consisted of computing the Cartier Manin and Schoof numbers

of the curve.

63
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Since MAGMA [MAG] has many of the routines needed for the aforementioned op-

erations, this part of the implementation was done with Magma on a Sun Sparc machine

with shared 16GB memory.

Even though the first phase has no direct connection with the solutions we discussed

earlier, this was an integral part of the project.

Details of implementation (including MAGMA code and BASH scripts) are available

at [Sad].

5.1.2 Counting Algorithms

For the implementation of the counting algorithms, we used SAGE [Ste07] and PythonTM .

Sage provides many useful methods for hyperelliptic curve implementation. The incli-

nation towards open source software acted as an additional reason behind the imple-

mentation of second phase in the open-source mathematical software.

The details of implementation, including the scripts and SAGE code, are available at

[Sad].

5.2 Results: Old Vs. New - Comparison Tables

As a part of testing the implementation, we generated a collection of hyperelliptic curves

(randomly). Potential (random) prime numbers in a valid range1 was chosen and de-

pending on the size (bit size) of the prime numbers, a suitable extension was selected

and the curves were built with random coefficients.

The details of these curves are given in the Curve Database: B.1, B.2, B.3, B.4, B.5.

In this section, we provide the reader with the details and results of running of the

best algorithm from chapter 4 and the algorithms which were designed in the previous

chapter.

The results are widely categorised into two parts -

(i) Based on the advantage of the new methods over the old method.

(ii) Based on the size of the prime numbers and extensions.

If the reader wishes to have more information about the curve, she is kindly

requested to look up the serial number (Column #) of the curve in the Curve

Database: B.1, B.2, B.3, B.4, B.5.

1The characteristic of the base field has to be less that 106 for viable computation of the Cartier Manin
operator
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5.2.1 Most of the curves

The table 5.1 compares the running times of the CMSchoof algorithm and the algo-

rithm 2 explained in the previous chapter.

The columns of the table are:

• The serial number of the curve

• The characteristic of the field

• The time required for the CMSchoof algorithm in section 3.2.3

• The time taken by the Primorial method 2

• The order of the curve computed by the two methods

The reader could see that the total time (last row) taken by the Primorial method is

only about 60% of the time required by the CMSchoof method from section 3.2.3.

In table 5.2, the same computation of the group order is given with the break down

of number of babysteps and giantsteps which were computed for the CMSchoof and

Primorial methods respectively2.

As in the previous tables, the last row show the total of the computations needed

for all the curves in the table. The total computation required by the Primorial-Schoof

combination 2 is only 75% of the methods without the Primorial advantage.

5.2.2 The curves which faired well

With some curves, the new method was so fast that we considered it worth mentioning

here. The tables 5.3, 5.4 show the time and operation comparisons between the two

different methods which are the main theme of this chapter.

5.2.3 Curves on non-prime fields

In the initial parts of this section, we saw the comparison of algorithms when they were

applied on curves which were defined on prime-fields.

In the tables 5.5, 5.6, 5.7, 5.8, the reader could see the comparison of algorithms when

the curves are of fields of prime power.

2It is to be observed that the giantsteps and babysteps are interchanged for the Primorial-Schoof com-
bination
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Characteristic CM-Schoof Primorial Group Order
# (in seconds) (in seconds)
4 950611 1.92 0.69 905310495679
7 914701 1.77 0.74 836139440502
11 949733 1.27 0.81 900165652552
12 915251 1.77 0.74 837793416944
16 931597 1.86 0.70 869982361562
20 943153 0.95 0.90 890142900928
36 935971 1.74 0.71 875243674426
41 910471 1.32 0.72 829338545904
43 941557 1.31 0.69 886140139008
48 976471 1.94 1.13 954445984839
49 910421 1.32 1.22 829112748104
52 950329 1.30 0.64 902394479472
54 953773 0.98 0.99 908944982496
57 983513 1.30 0.85 967276075676
66 907363 1.76 0.78 823137443386
67 910177 1.90 1.36 830364235233
71 926701 1.30 0.96 857654014544
78 994927 1.32 0.88 988930781928
80 960931 1.35 1.21 925158161432
83 968467 1.30 0.56 936743525792
85 969421 1.82 0.71 939710333262
88 970859 1.01 0.54 943450974432
89 944491 1.31 0.74 891264709896
91 961871 1.29 0.86 924578774816
101 976991 1.31 0.64 953972995396
104 995833 1.88 1.22 992188599049
105 930779 1.36 1.07 867626285192
106 945289 1.34 0.55 894471514876
107 979651 1.89 1.02 960456115583
109 980887 1.34 0.60 962324055304
113 978683 1.89 0.80 959357530602
114 994501 1.86 1.10 988997216327
115 968729 1.85 1.00 939179183518
116 994751 1.86 1.26 990686610702
117 931003 1.31 1.22 867403320348
118 916291 1.81 1.09 840590700384
120 989557 0.99 0.54 978269804256

55.8 32.3

Table 5.1: Comparison old vs. new methods: Time and Group Order
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Schoof Primorial Schoof Primorial Schoof Primorial
# Base Ext Baby Giant Giants Baby Total Total
4 950611 1 37 1 26 38 63 39
7 914701 1 36 3 15 37 51 40

11 949733 1 26 8 7 19 33 27
12 915251 1 36 3 19 37 55 40
16 931597 1 36 2 29 37 65 39
20 943153 1 18 11 11 10 29 21
36 935971 1 36 2 14 37 50 39
41 910471 1 26 6 14 19 40 25
43 941557 1 26 5 12 19 38 24
48 976471 1 37 11 23 38 60 49
49 910421 1 26 17 14 19 40 36
52 950329 1 26 4 11 19 37 23
54 953773 1 19 13 7 10 26 23
57 983513 1 26 9 13 19 39 28
66 907363 1 36 4 17 37 53 41
67 910177 1 36 17 28 37 64 54
71 926701 1 26 11 9 19 35 30
78 994927 1 26 9 10 19 36 28
80 960931 1 26 17 19 19 45 36
83 968467 1 26 2 9 19 35 21
85 969421 1 37 2 18 38 55 40
88 970859 1 19 3 11 10 30 13
89 944491 1 26 6 10 19 36 25
91 961871 1 26 9 11 19 37 28

101 976991 1 26 4 11 19 37 23
104 995833 1 37 13 21 39 58 52
105 930779 1 26 14 17 19 43 33
106 945289 1 26 2 16 19 42 21
107 979651 1 37 9 22 38 59 47
109 980887 1 26 3 14 19 40 22
113 978683 1 37 4 25 38 62 42
114 994501 1 37 11 18 38 55 49
115 968729 1 37 9 22 38 59 47
116 994751 1 37 15 24 38 61 53
117 931003 1 26 17 15 19 41 36
118 916291 1 36 11 23 37 59 48
120 989557 1 19 3 7 10 26 13

1102 290 592 965 1694 1255

Table 5.2: Comparison old vs. new methods: Number of operations
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Characteristic CM-Schoof Primorial Group Order
# (in seconds) (in seconds)
101 976991 1.31 0.64 953972995396
52 950329 1.30 0.64 902394479472
43 941557 1.31 0.69 886140139008
120 989557 0.99 0.54 978269804256
4 950611 1.92 0.69 905310495679
106 945289 1.34 0.55 894471514876
41 910471 1.32 0.72 829338545904
109 980887 1.34 0.60 962324055304
89 944491 1.31 0.74 891264709896
83 968467 1.30 0.56 936743525792
16 931597 1.86 0.70 869982361562
88 970859 1.01 0.54 943450974432
113 978683 1.89 0.80 959357530602

Table 5.3: Comparison old vs. new: Time and Group Order (Better Curves)

Schoof Primorial Schoof Primorial Schoof Primorial
# Base Ext Baby Giant Giants Baby Total Total

101 976991 1 26 4 11 19 37 23
52 950329 1 26 4 11 19 37 23
43 941557 1 26 5 12 19 38 24

106 945289 1 26 2 16 19 42 21
120 989557 1 19 3 7 10 26 13

4 950611 1 37 1 26 38 63 39
41 910471 1 26 6 14 19 40 25

109 980887 1 26 3 14 19 40 22
89 944491 1 26 6 10 19 36 25
83 968467 1 26 2 9 19 35 21
16 931597 1 36 2 29 37 65 39
88 970859 1 19 3 11 10 30 13

113 978683 1 37 4 25 38 62 42
356 45 195 285 551 330

Table 5.4: Comparison old vs. new: Number of operations(Better Curves)
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Characteristic CM-Schoof Primorial Group Order
# (in seconds) (in seconds)
124 1009 1.03 4.18 1040604009999
134 647 0.93 3.84 176319369215
140 691 1.00 3.88 229310730495

Table 5.5: Curves : Time and Group Order (Better Curves)

Schoof Pri. Schoof Pri. Pri. Schoof Pri. Pri.R
# Base Ext Baby Giant Giants Baby Restr. Total Total Total

134 647 2 1295 1451 1294 1156 165 2589 2607 1616
124 1009 2 1427 1764 1427 1156 165 2854 2920 1929
140 691 2 978 828 977 1156 165 1955 1984 993

3700 4043 3698 3468 495 7398 7511 4538

Table 5.6: Comparison old vs. new: Number of operations(Better Curves)

In the tables where the operations are compared for curves on non-prime fields,

it is seen that the operations needed by Primorial methods are more than the

naive CMSchoof method without Primorial.

But the tables which compare the non-prime based curves have two extra

columns which specify, how the algorithm 3 comes to help from saving the

extra computation by making use of the known cryptographic restrictions.

It is worth noting that the saving done by the restricted (Pri.R) algorithm is

about 50% of the CMSchoof algorithm which is the best one available.

Characteristic CM-Schoof Primorial Group Order
# (in seconds) (in seconds)
136 197 1.32 5.90 58536332836258
130 109 1.15 5.14 1683002823435
123 211 1.21 5.93 88361163800489
143 149 1.18 5.50 10966612124981

Table 5.7: Comparison old vs. new: Time and Group Order (Better Curves)
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Schoof Pri. Schoof Pri. Pri. Schoof Pri. Pri.R
# Base Ext Baby Giant Giants Baby Restr. Total Total Total

136 197 3 5981 7148 5981 5006 715 11962 12154 7863
130 109 3 4246 3603 4246 5006 715 8492 8609 4318
123 211 3 6745 9089 6744 5006 715 13489 14095 9804
143 149 3 5189 5380 5188 5006 715 10377 10386 6095

22161 25220 22159 20024 2860 44320 45244 28080

Table 5.8: Comparison old vs. new: Number of operations(Better Curves)

5.3 Summary and Future Prospects

In the last two chapters, we saw the improvements which are offered by the combination

of the traditional methods and the primorial counting method.

Even with the improvements, the counting in the jacobian of hyperelliptic curves are

still O(N
1
2 ) where N is the size of the Weil interval, where N = q

3
2 and q = 2n where q is

the size of the field on which the curve is defined and n is the size in number of bits. The

algorithms still need exponential space and time for the computation in the jacobian.

But on the happy note, even when the theoretical improvements aren’t too satisfying,

on the practical side, we saw that the computation requirement reduces up to 60% of

the original requirement.

5.3.1 Bringing in Birthday Paradox

All the algorithms discussed in this thesis were focusing on the BSGS version of the

counting. The same methods can be used in a setting where the theme is Birthday

paradox algorithms (Please see 3.1.2).

Since BSGS is better suited for the curves (and the fields) we have discussed in this

thesis, Birthday paradox algorithms weren’t explored much. But for curves which need

much more computation, when the memory-space available is limited, Birthday para-

dox algorithms would make more sense and should be explored.

5.3.2 Reverse Engineering

For the purpose of guaranteeing security, counting is not the only way. A different

approach is to construct curves using the CM method[AM93]. Even though nowadays

counting points is feasible for elliptic curves of cryptographic size, this method is still

of interest, e.g. it is the main way of constructing non-supersingular curves with low
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embedding degree which can be useful in pairing based protocols if one wants to avoid

supersingular curves for some reason or if a larger embedding degree is desired.

While our interests are in creating curves suitable for cryptography, the future re-

search could follow this lead too. The readers who are interested are encouraged to

peruse [Wen03] and [MKS].
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Appendix A

Algebra Refresher

This chapter has been provided as an easy reference to the terms used in the thesis.

For detailed references for group theory Herstein [Her86, Her75] and for field theory

Roman [Rom] are recommended. Set theory is assumed to be known.

A.1 Groups

Definition 43 (Group). A nonempty set G is said to be a group if in G there is defined an

operation ⊕ such that it satisfies the following.

1. Closure: a, b ∈ G implies a ⊕ b ∈ G

2. Associativity: Given a, b, c ∈ G then a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c

3. Existence of Identity: There exists a special element ǫ ∈ G such that a⊕ ǫ = ǫ⊕ a = a for

all a ∈ G. ǫ is called the identity element of G.

4. Inverse Element: For every a ∈ G there exists an element b ∈ G such that a⊕b = b⊕a = ǫ.

(We write b as a−1 and call it the inverse of a in G)

These four conditions are called group axioms.

We usually represent a group by (G, ∗); where G is the group and ∗ is the group

operation.

Example 44. (Z, +) is a group where Z is the integers and + is the ordinary addition.

Definition 45 (Order). The number of elements of a group is called the order of the group. If

the order is finite, the group is said to be a finite group. Order of a group G is denoted as ‖G‖.

But, for an element a ∈ G, the least positive number m such that am = ǫ is called the order

of a in G, represented as o(a).

73
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Definition 46 (Abelian/Commutative Group). A group is an abelian1 group if a⊕b = b⊕a

for all a, b ∈ G.

Definition 47 (Subgroup). A nonempty subset H of a group G is called a subgroup of G, if

relative to the operation in G, H itself satisfies all the group axioms.

Example 48. H = {Even numbers} ⊂ Z (H, +) is a group under ordinary addition.

Definition 49. A relation ∼ of a set G is called an equivalence relation if for all a, b, c ∈ G:

1. a ∼ a.(Reflexive)

2. a ∼ b implies b ∼ a.(Symmetric)

3. a ∼ b and b ∼ c implies a ∼ c.(Transitive)

Definition 50 (Equivalence Class). If ∼ is an equivalence relation on G, then [a], the equiva-

lence class of a is defined by [a] = {b ∈ G | b ∼ a}.

Lemma 51. If ∼ is an equivalence relation on G, then

1. G =
⋃

a∈G[a]

2. [a] ∩ [b] 6= φ equivalent to [a] = [b]

Definition 52 (Coset). For a group G, for which H is a subgroup, and an element of G, then

gH = {gh | h an element of H} is called the left coset of H in G, Hg = {hg | h an element of

H} is called the right coset of H in G.

Theorem 53 (Lagrange’s2 Theorem). If G is a finite group and H is a subgroup of G, then

‖H‖ divides ‖G‖.

Fact 54. If G is finite and a ∈ G, then o(a) | ‖G‖. We can see this directly from definition 45

and Theorem 53.

Definition 55 (Homomorphism). Let G and G′ be two groups then a mapping φ : G → G′ is

called a homomorphism if φ(ab) = φ(a)φ(b) for all a, b ∈ G.

If the homomorphism is a bijection, then it is called an isomorphism.

Definition 56 (Kernel). If φ is a homomorphism from G to G′, then the kernel of φ is defined

by kφ = {a ∈ G | φ(a) = ǫ′}, and ǫ′ is the identity element of G′.

1The name comes from the great Norwegian mathematician Niels Henrik Abel
2The name of the theorem comes from famous mathematician J L Lagrange
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Definition 57. Image of a subgroup H of G under φ is defined as Im(H) = {b ∈ G′ | ∃a ∈ G

such that φ(a) = b}.

Definition 58 (Normal Subgroup). A subgroup N of G is said to be normal subgroup iff

a−1Na ⊂ N for every a ∈ G.

We denote this by N ⊳ G.

Definition 59 (Factor group). If N ⊳ G and we define a ∼ b iff ab−1 ∈ N , we get a new set

of equivalence classes. This set of equivalence classes is called the factor group or quotient

group of G by N .

We have a symbol for this factor group: G/N .

Theorem 60. If N ⊳ G, and

G/N = {[a] | a ∈ G} = {Na | a ∈ G}
Then G/N is a group relative to [a][b] = [ab].

Theorem 61 (Homomorphism). Let f : G → G′ be a homomorphism and N be a sub group of

G with N ⊆ ker(f). We then have a unique homomorphism h : G/N → G′ such that h◦φ = f .

i.e.,

G
f−→ G′

φ ↓ h ր

G/N

Now we have come to a point where we can discuss the other three homomorphism

theorems. I will state them one by one. I shall not give the proofs. For the proofs the

reader can refer to any of these books by Herstein [Her86, Her75].

Theorem 62 (First Homomorphism Theorem). Let φ be a homomorphism of G onto G′ with

kernel K. Then G′ ≃ G/K, the isomorphism between these effected by the map.

ψ : G/K → G′

defined by ψ(Ka) = φ(a).

Theorem 63 (Second Homomorphism Theorem). Let the map φ : G → G′ be a homomor-

phism of G onto G′ with kernel K. If H ′ is a subgroup of G′ and if

H = {a ∈ G | φ(a) ∈ H ′}

Then H is a subgroup of G, H ⊃ K and H/K ≃ H ′. Finally, if H ′ ⊳ G′ then H ⊳ G.
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Theorem 64 (Third Homomorphism Theorem). If the map φ : G → G′ is a homomorphism

of G onto G′ with kernel K, then if N ′ ⊳ G′ and N = {a ∈ G | φ(a) ∈ N ′}, we conclude that

G/N ≃ G′/N ′ and G/N ≃ (G/K)/(N/K)

A.2 Rings and Fields

Definition 65 (Ring). Let R be a set on which two binary operations are defined, called addition

and multiplication, and denoted by + and ·. Then R is called a ring with respect to these

operations if the following properties hold:

1. Closure: If a, b ∈ R, then the sum a + b and the product a · b are uniquely defined and

belong to R.

2. Associative law: For all a, b, c ∈ R, a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c.

3. Commutative law: For all a, b ∈ R, a + b = b + a.

4. Distributive law: For all a, b, c ∈ R, a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c.

5. Additive identity: The set R contains an additive identity element, denoted by 0, such that

for all a ∈ R, a + 0 = a and 0 + a = a.

6. Additive inverse: For each a ∈ R, there exists an element b ∈ R such that a + b = 0 and

b + a = 0. The element b is called the additive inverse of a in R, and denoted by −a.

If · is also commutative, the ring is called a commutative ring. Otherwise an associative ring.

Definition 66 (Integral Domain). A commutative ring R is called an Integral Domain if

a · b = 0 implies a = 0 or b = 0. In other words, an integral domain is a commutative ring with

NO zero divisors.

An element 0 6= a ∈ R is called a zero divisors of there exists an element b 6= 0 ∈ R such

that a · b = 0.

If there is an element 1 ∈ R such that for all a ∈ R, 1 · a = a · 1 = a, we call R to be a

ring with unit. It is necessary that 1 6= 0.

Definition 67 (Ideal). For a group we have subgroup. The same way, for a ring we have an

Ideal. It is defined as below.

Let R be a ring, a non-empty subset I of R is called an ideal (two sided) if

1. I is an additive subgroup of R.
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2. Given r ∈ R, a ∈ I , then ra ∈ I and ar ∈ I .

Definition 68 (Homomorphism). Similar to group homomorphisms, we have homomorphisms

in rings also.

A mapping φ : R → R′ of the ring R into the ring R′ is a homomorphism if

1. φ (a + b) = φ(a) + φ(b)

2. φ(ab) = φ(a)φ(b)

Definition 69 (Field). A ring R is called a field iff the following conditions are satisfied.

1. R is a ring with unit.

2. For all a 6= 0 ∈ R there exists a b ∈ R such that a · b = b · a = 1. This b is denoted as b−1

3. R is commutative.

Or, we can say the same in other words.

1. (R, +) is a commutative ring.

2. (R∗, ·) is a commutative ring.(R∗ = R\{0}).

3. · is distributive over +.

A.3 Extension Field

Definition 70 (sub-field, extension field). If a field F is a subset of another field K with

respect to the same operations in K, then F is called a sub-field of K. And, K is an extension

field of F .

Definition 71 (algebraic, minimal polynomial). Let K be an extension field of F . An element

a ∈ K is said to be algebraic over F if there exists a polynomial f ∈ F [x] with f(a) = 0. The

monic polynomial with minimal degree so that f(a) = 0 is called the minimal polynomial of a

over F and denoted by fa
min.

Definition 72 (Algebraic closure). A field K is said to be algebraically closed if every polyno-

mial f(x) ∈ K[x] has a zero in K. Such a polynomial splits into linear factors.

Sometimes, a field F may not be algebraically closed, but all the polynomials in F [x] have

their zeros in K, an algebraict extension of F . Then K is called the algebraic closure of F .

From the cryptographic perspective, all the details of algebra are not needed. In [Kob98]

Koblitz gives an excellent tutorial of what is needed for our purpose.
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Appendix B

Curve Database

In this appendix-chapter, the reader may look up the details of the hyperelliptic curves

which were used for the testing and comparison of algorithms mentioned in this thesis.

The database has 150 curves, satisfying various parameters and they can be looked up

in the 5 tables below.

# Field Curve y2 =
1 952199 x5 + 308474 ∗ x4 + 925695 ∗ x3 + 135573 ∗ x2 + 503860 ∗ x + 177405
2 923917 x5 + 845747 ∗ x4 + 737151 ∗ x3 + 467122 ∗ x2 + 835737 ∗ x + 141596
3 965177 x5 + 696632 ∗ x4 + 964977 ∗ x3 + 703401 ∗ x2 + 861456 ∗ x + 191726
4 950611 x5 + 472292 ∗ x4 + 905508 ∗ x3 + 888057 ∗ x2 + 405833 ∗ x + 856022
5 905381 x5 + 381370 ∗ x4 + 91086 ∗ x3 + 291930 ∗ x2 + 223972 ∗ x + 137727
6 920497 x5 + 221340 ∗ x4 + 267870 ∗ x3 + 914875 ∗ x2 + 60119 ∗ x + 116978
7 914701 x5 + 488913 ∗ x4 + 477726 ∗ x3 + 62176 ∗ x2 + 171770 ∗ x + 201159
8 906259 x5 + 235896 ∗ x4 + 628781 ∗ x3 + 727368 ∗ x2 + 580885 ∗ x + 350981
9 986053 x5 + 16163 ∗ x4 + 385124 ∗ x3 + 140238 ∗ x2 + 365002 ∗ x + 118442
10 904147 x5 + 802370 ∗ x4 + 581623 ∗ x3 + 852960 ∗ x2 + 334067 ∗ x + 753980
11 949733 x5 + 589161 ∗ x4 + 224726 ∗ x3 + 818462 ∗ x2 + 926603 ∗ x + 191471
12 915251 x5 + 323219 ∗ x4 + 51552 ∗ x3 + 403315 ∗ x2 + 364495 ∗ x + 758611
13 994337 x5 + 348867 ∗ x4 + 484819 ∗ x3 + 583458 ∗ x2 + 773998 ∗ x + 118484
14 966463 x5 + 87284 ∗ x4 + 292742 ∗ x3 + 413076 ∗ x2 + 807098 ∗ x + 537581
15 977239 x5 + 556097 ∗ x4 + 863815 ∗ x3 + 448222 ∗ x2 + 558078 ∗ x + 548796
16 931597 x5 + 613085 ∗ x4 + 53709 ∗ x3 + 722125 ∗ x2 + 663963 ∗ x + 32753
17 918431 x5 + 732804 ∗ x4 + 909857 ∗ x3 + 713375 ∗ x2 + 350137 ∗ x + 525702
18 911737 x5 + 5326 ∗ x4 + 589802 ∗ x3 + 505339 ∗ x2 + 319828 ∗ x + 498167
19 980717 x5 + 579306 ∗ x4 + 335321 ∗ x3 + 696098 ∗ x2 + 865945 ∗ x + 363890
20 943153 x5 + 625768 ∗ x4 + 845048 ∗ x3 + 631711 ∗ x2 + 558178 ∗ x + 929066

Table B.1: Curve Database I
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# Field Curve y2 =
21 935243 x5 + 146124 ∗ x4 + 580923 ∗ x3 + 345113 ∗ x2 + 646258 ∗ x + 875693
22 927961 x5 + 302032 ∗ x4 + 770093 ∗ x3 + 599324 ∗ x2 + 340845 ∗ x + 876678
23 960763 x5 + 334256 ∗ x4 + 155264 ∗ x3 + 523903 ∗ x2 + 841394 ∗ x + 684258
24 911861 x5 + 335815 ∗ x4 + 327802 ∗ x3 + 551070 ∗ x2 + 414920 ∗ x + 127089
25 998813 x5 + 382474 ∗ x4 + 835628 ∗ x3 + 627490 ∗ x2 + 476589 ∗ x + 448891
26 928043 x5 + 319134 ∗ x4 + 545185 ∗ x3 + 127316 ∗ x2 + 267040 ∗ x + 701437
27 952163 x5 + 400477 ∗ x4 + 432850 ∗ x3 + 426697 ∗ x2 + 115640 ∗ x + 282213
28 964253 x5 + 929637 ∗ x4 + 160994 ∗ x3 + 522148 ∗ x2 + 514553 ∗ x + 394123
29 999181 x5 + 516964 ∗ x4 + 302284 ∗ x3 + 555897 ∗ x2 + 360724 ∗ x + 467363
30 943541 x5 + 291420 ∗ x4 + 117431 ∗ x3 + 570268 ∗ x2 + 566063 ∗ x + 239351
31 944773 x5 + 112164 ∗ x4 + 730068 ∗ x3 + 36016 ∗ x2 + 267839 ∗ x + 317481
32 907637 x5 + 506229 ∗ x4 + 455054 ∗ x3 + 541174 ∗ x2 + 196449 ∗ x + 85008
33 906461 x5 + 691669 ∗ x4 + 873182 ∗ x3 + 261543 ∗ x2 + 24711 ∗ x + 559877
34 989119 x5 + 60211 ∗ x4 + 79917 ∗ x3 + 957707 ∗ x2 + 579049 ∗ x + 301535
35 916213 x5 + 866080 ∗ x4 + 470448 ∗ x3 + 739836 ∗ x2 + 371418 ∗ x + 776546
36 935971 x5 + 738164 ∗ x4 + 886781 ∗ x3 + 659990 ∗ x2 + 879837 ∗ x + 89867
37 982703 x5 + 927946 ∗ x4 + 20961 ∗ x3 + 248970 ∗ x2 + 71513 ∗ x + 456256
38 969037 x5 + 323305 ∗ x4 + 159255 ∗ x3 + 675683 ∗ x2 + 268273 ∗ x + 659947
39 900563 x5 + 364811 ∗ x4 + 256616 ∗ x3 + 743231 ∗ x2 + 61078 ∗ x + 175424
40 904103 x5 + 878771 ∗ x4 + 392107 ∗ x3 + 260651 ∗ x2 + 346109 ∗ x + 132175
41 910471 x5 + 512853 ∗ x4 + 81118 ∗ x3 + 715561 ∗ x2 + 565884 ∗ x + 557944
42 955987 x5 + 55414 ∗ x4 + 119075 ∗ x3 + 68170 ∗ x2 + 632193 ∗ x + 446733
43 941557 x5 + 443188 ∗ x4 + 75279 ∗ x3 + 400529 ∗ x2 + 412056 ∗ x + 826719
44 916831 x5 + 559972 ∗ x4 + 142069 ∗ x3 + 147863 ∗ x2 + 219642 ∗ x + 835352
45 942433 x5 + 187062 ∗ x4 + 207093 ∗ x3 + 16167 ∗ x2 + 730536 ∗ x + 352700
46 970747 x5 + 761987 ∗ x4 + 438683 ∗ x3 + 581133 ∗ x2 + 32785 ∗ x + 223148
47 926633 x5 + 456145 ∗ x4 + 678919 ∗ x3 + 714671 ∗ x2 + 363252 ∗ x + 834934
48 976471 x5 + 85490 ∗ x4 + 77860 ∗ x3 + 434449 ∗ x2 + 313872 ∗ x + 353471
49 910421 x5 + 295787 ∗ x4 + 725416 ∗ x3 + 194139 ∗ x2 + 777672 ∗ x + 40676
50 993647 x5 + 229170 ∗ x4 + 376738 ∗ x3 + 107663 ∗ x2 + 613338 ∗ x + 440009
51 901891 x5 + 567807 ∗ x4 + 418521 ∗ x3 + 285982 ∗ x2 + 486775 ∗ x + 299870
52 950329 x5 + 767708 ∗ x4 + 195523 ∗ x3 + 80165 ∗ x2 + 180655 ∗ x + 27641

Table B.2: Curve Database II
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# Field Curve y2 =
53 918641 x5 + 915888 ∗ x4 + 259085 ∗ x3 + 305820 ∗ x2 + 342520 ∗ x + 902511
54 953773 x5 + 346600 ∗ x4 + 774616 ∗ x3 + 452647 ∗ x2 + 609948 ∗ x + 33581
55 972661 x5 + 466991 ∗ x4 + 605161 ∗ x3 + 705390 ∗ x2 + 883726 ∗ x + 916168
56 903541 x5 + 112643 ∗ x4 + 770036 ∗ x3 + 804706 ∗ x2 + 588768 ∗ x + 835379
57 983513 x5 + 642288 ∗ x4 + 143187 ∗ x3 + 20843 ∗ x2 + 4649 ∗ x + 667765
58 966727 x5 + 320445 ∗ x4 + 207163 ∗ x3 + 124293 ∗ x2 + 507447 ∗ x + 238255
59 979831 x5 + 839384 ∗ x4 + 222311 ∗ x3 + 462038 ∗ x2 + 337295 ∗ x + 33443
60 910229 x5 + 267073 ∗ x4 + 746452 ∗ x3 + 140984 ∗ x2 + 622670 ∗ x + 528420
61 964289 x5 + 610447 ∗ x4 + 687677 ∗ x3 + 69989 ∗ x2 + 618993 ∗ x + 240518
62 954221 x5 + 258797 ∗ x4 + 684417 ∗ x3 + 621193 ∗ x2 + 324361 ∗ x + 687141
63 978389 x5 + 158134 ∗ x4 + 252056 ∗ x3 + 560781 ∗ x2 + 516362 ∗ x + 705129
64 908363 x5 + 201772 ∗ x4 + 347360 ∗ x3 + 146106 ∗ x2 + 525564 ∗ x + 291647
65 958921 x5 + 236201 ∗ x4 + 914770 ∗ x3 + 813276 ∗ x2 + 250122 ∗ x + 162319
66 907363 x5 + 513615 ∗ x4 + 52316 ∗ x3 + 20406 ∗ x2 + 190287 ∗ x + 284444
67 910177 x5 + 629253 ∗ x4 + 460689 ∗ x3 + 579116 ∗ x2 + 826627 ∗ x + 340533
68 977591 x5 + 583540 ∗ x4 + 124590 ∗ x3 + 169167 ∗ x2 + 811997 ∗ x + 417768
69 938437 x5 + 654862 ∗ x4 + 453935 ∗ x3 + 420859 ∗ x2 + 724659 ∗ x + 81669
70 959263 x5 + 387097 ∗ x4 + 720977 ∗ x3 + 327083 ∗ x2 + 476228 ∗ x + 379088
71 926701 x5 + 710026 ∗ x4 + 287242 ∗ x3 + 155133 ∗ x2 + 486130 ∗ x + 43680
72 920197 x5 + 24682 ∗ x4 + 281421 ∗ x3 + 539839 ∗ x2 + 11885 ∗ x + 164240
73 919013 x5 + 705910 ∗ x4 + 199623 ∗ x3 + 572806 ∗ x2 + 167812 ∗ x + 805401
74 923539 x5 + 126109 ∗ x4 + 41294 ∗ x3 + 791372 ∗ x2 + 371138 ∗ x + 532177
75 949733 x5 + 281600 ∗ x4 + 227997 ∗ x3 + 875928 ∗ x2 + 458945 ∗ x + 80809
76 930737 x5 + 26153 ∗ x4 + 722274 ∗ x3 + 566502 ∗ x2 + 46356 ∗ x + 594326
77 976853 x5 + 260704 ∗ x4 + 911156 ∗ x3 + 369606 ∗ x2 + 269146 ∗ x + 528503
78 994927 x5 + 880424 ∗ x4 + 408335 ∗ x3 + 137512 ∗ x2 + 615796 ∗ x + 513052
79 918733 x5 + 580469 ∗ x4 + 204042 ∗ x3 + 372134 ∗ x2 + 392585 ∗ x + 358505
80 960931 x5 + 513818 ∗ x4 + 680267 ∗ x3 + 11661 ∗ x2 + 847635 ∗ x + 939420
81 943471 x5 + 467547 ∗ x4 + 358411 ∗ x3 + 740854 ∗ x2 + 116245 ∗ x + 42350
82 923617 x5 + 558081 ∗ x4 + 390611 ∗ x3 + 688817 ∗ x2 + 561472 ∗ x + 777871
83 968467 x5 + 575258 ∗ x4 + 686641 ∗ x3 + 820067 ∗ x2 + 377482 ∗ x + 15313
84 978001 x5 + 609724 ∗ x4 + 595441 ∗ x3 + 355992 ∗ x2 + 503159 ∗ x + 659553
85 969421 x5 + 465880 ∗ x4 + 161125 ∗ x3 + 636205 ∗ x2 + 914646 ∗ x + 548369

Table B.3: Curve Database III
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# Field Curve y2 =
86 979807 x5 + 849749 ∗ x4 + 357177 ∗ x3 + 777899 ∗ x2 + 627546 ∗ x + 749719
87 965491 x5 + 964855 ∗ x4 + 311539 ∗ x3 + 696336 ∗ x2 + 612648 ∗ x + 541082
88 970859 x5 + 232623 ∗ x4 + 2761 ∗ x3 + 665717 ∗ x2 + 914105 ∗ x + 445769
89 944491 x5 + 882817 ∗ x4 + 16255 ∗ x3 + 483054 ∗ x2 + 602580 ∗ x + 521030
90 974167 x5 + 268719 ∗ x4 + 92088 ∗ x3 + 639935 ∗ x2 + 500236 ∗ x + 152777
91 961871 x5 + 749032 ∗ x4 + 466051 ∗ x3 + 354382 ∗ x2 + 643823 ∗ x + 785668
92 950221 x5 + 264068 ∗ x4 + 734527 ∗ x3 + 524677 ∗ x2 + 198317 ∗ x + 256834
93 971491 x5 + 181513 ∗ x4 + 474682 ∗ x3 + 731641 ∗ x2 + 163741 ∗ x + 667060
94 909071 x5 + 643387 ∗ x4 + 119279 ∗ x3 + 187103 ∗ x2 + 378285 ∗ x + 816769
95 912763 x5 + 287627 ∗ x4 + 349824 ∗ x3 + 502493 ∗ x2 + 39028 ∗ x + 656690
96 997013 x5 + 885968 ∗ x4 + 475473 ∗ x3 + 193991 ∗ x2 + 873436 ∗ x + 206068
97 982271 x5 + 684362 ∗ x4 + 527866 ∗ x3 + 462578 ∗ x2 + 368291 ∗ x + 777162
98 918431 x5 + 250073 ∗ x4 + 267946 ∗ x3 + 881682 ∗ x2 + 729117 ∗ x + 830045
99 915437 x5 + 792764 ∗ x4 + 368799 ∗ x3 + 874837 ∗ x2 + 573052 ∗ x + 632498
100 950921 x5 + 310381 ∗ x4 + 483901 ∗ x3 + 894620 ∗ x2 + 117339 ∗ x + 573050
101 976991 x5 + 606644 ∗ x4 + 644314 ∗ x3 + 339718 ∗ x2 + 159335 ∗ x + 261407
102 953431 x5 + 552110 ∗ x4 + 540686 ∗ x3 + 747278 ∗ x2 + 87804 ∗ x + 737276
103 981713 x5 + 293911 ∗ x4 + 307274 ∗ x3 + 555581 ∗ x2 + 801463 ∗ x + 186455
104 995833 x5 + 841079 ∗ x4 + 105371 ∗ x3 + 772157 ∗ x2 + 882275 ∗ x + 279833
105 930779 x5 + 836677 ∗ x4 + 461360 ∗ x3 + 311102 ∗ x2 + 683901 ∗ x + 325193
106 945289 x5 + 828704 ∗ x4 + 490383 ∗ x3 + 287874 ∗ x2 + 546724 ∗ x + 613626
107 979651 x5 + 865447 ∗ x4 + 824291 ∗ x3 + 465559 ∗ x2 + 90588 ∗ x + 847886
108 985013 x5 + 52954 ∗ x4 + 34816 ∗ x3 + 480083 ∗ x2 + 574302 ∗ x + 526033
109 980887 x5 + 946362 ∗ x4 + 860833 ∗ x3 + 639467 ∗ x2 + 695877 ∗ x + 712571
110 901751 x5 + 838525 ∗ x4 + 204498 ∗ x3 + 732915 ∗ x2 + 809393 ∗ x + 889067
111 998687 x5 + 134067 ∗ x4 + 735442 ∗ x3 + 424012 ∗ x2 + 38532 ∗ x + 997697
112 974747 x5 + 103225 ∗ x4 + 728227 ∗ x3 + 114167 ∗ x2 + 100151 ∗ x + 856138
113 978683 x5 + 607590 ∗ x4 + 549956 ∗ x3 + 628699 ∗ x2 + 485486 ∗ x + 374205
114 994501 x5 + 569473 ∗ x4 + 374412 ∗ x3 + 407717 ∗ x2 + 388451 ∗ x + 928747
115 968729 x5 + 945772 ∗ x4 + 906436 ∗ x3 + 248262 ∗ x2 + 75456 ∗ x + 296993
116 994751 x5 + 578119 ∗ x4 + 269463 ∗ x3 + 151055 ∗ x2 + 559920 ∗ x + 712056
117 931003 x5 + 456756 ∗ x4 + 580152 ∗ x3 + 704506 ∗ x2 + 528293 ∗ x + 650869
118 916291 x5 + 832260 ∗ x4 + 834520 ∗ x3 + 325664 ∗ x2 + 707708 ∗ x + 719909

Table B.4: Curve Database IV
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# Field Curve y2 =
119 979747 x5 + 748096 ∗ x4 + 292993 ∗ x3 + 663979 ∗ x2 + 875484 ∗ x + 785966
120 989557 x5 + 263262 ∗ x4 + 40556 ∗ x3 + 19334 ∗ x2 + 775109 ∗ x + 342663
121 in x 1133 x5 + 53 ∗ x4 + 67 ∗ x3 + 20 ∗ x2 + 102 ∗ x + 32
122 in x 2273 x5 + 86 ∗ x4 + 154 ∗ x3 + 95 ∗ x2 + 59 ∗ x + 183
123 in x 2113 x5 + 104 ∗ x4 + 107 ∗ x3 + 52 ∗ x2 + 44 ∗ x + 191
124 in x 10092 x5 + 288 ∗ x4 + 718 ∗ x3 + 382 ∗ x2 + 835 ∗ x + 499
125 in x 17832 x5 + 542 ∗ x4 + 1205 ∗ x3 + 1648 ∗ x2 + 568 ∗ x + 81
126 in x 16932 x5 + 779 ∗ x4 + 1429 ∗ x3 + 1312 ∗ x2 + 1133 ∗ x + 808
127 8262101 x5 + 4196304 ∗ x4 + 1137894 ∗ x3 + 3506813 ∗ x2 + 5164856 ∗ x + 5396020
128 in x 973 x5 + 25 ∗ x4 + 39 ∗ x3 + 63 ∗ x2 + 11 ∗ x + 15
129 4168933 x5 + 715768 ∗ x4 + 2865808 ∗ x3 + 3908416 ∗ x2 + 2123323 ∗ x + 2058929
130 in x 1093 x5 + 38 ∗ x4 + 76 ∗ x3 + 93 ∗ x2 + 79 ∗ x + 9
131 7643731 x5 + 234475 ∗ x4 + 5576477 ∗ x3 + 7263848 ∗ x2 + 970251 ∗ x + 3445515
132 in x 19072 x5 + 1862 ∗ x4 + 1499 ∗ x3 + 89 ∗ x2 + 733 ∗ x + 1476
133 in x 31812 x5 + 2472 ∗ x4 + 1191 ∗ x3 + 1930 ∗ x2 + 856 ∗ x + 330
134 in x 6472 x5 + 574 ∗ x4 + 423 ∗ x3 + 379 ∗ x2 + 464 ∗ x + 252
135 in x 31872 x5 + 1921 ∗ x4 + 758 ∗ x3 + 1546 ∗ x2 + 426 ∗ x + 1818
136 in x 1973 x5 + 13 ∗ x4 + 185 ∗ x3 + 80 ∗ x2 + 34 ∗ x + 2
137 in x 15532 x5 + 173 ∗ x4 + 885 ∗ x3 + 379 ∗ x2 + 1309 ∗ x + 1344
138 8237839 x5 + 7185432 ∗ x4 + 3379093 ∗ x3 + 6878452 ∗ x2 + 6893411 ∗ x + 6020685
139 2474039 x5 + 1879790 ∗ x4 + 2268255 ∗ x3 + 827250 ∗ x2 + 694767 ∗ x + 596778
140 in x 6912 x5 + 602 ∗ x4 + 392 ∗ x3 + 56 ∗ x2 + 386 ∗ x + 388
141 in x 40572 x5 + 296 ∗ x4 + 3613 ∗ x3 + 3857 ∗ x2 + 407 ∗ x + 1977
142 in x 27192 x5 + 2399 ∗ x4 + 2506 ∗ x3 + 1661 ∗ x2 + 1695 ∗ x + 1455
143 in x 1493 x5 + 44 ∗ x4 + 18 ∗ x3 + 21 ∗ x2 + 136 ∗ x + 16
144 in x 8832 x5 + 423 ∗ x4 + 411 ∗ x3 + 103 ∗ x2 + 373 ∗ x + 87
145 361723 x5 + 332038 ∗ x4 + 24939 ∗ x3 + 66156 ∗ x2 + 259821 ∗ x + 90002
146 1180477 x5 + 209775 ∗ x4 + 1151223 ∗ x3 + 614088 ∗ x2 + 105825 ∗ x + 1011857
147 in x 31632 x5 + 843 ∗ x4 + 1649 ∗ x3 + 893 ∗ x2 + 2392 ∗ x + 2450
148 in x 1633 x5 + 135 ∗ x4 + 139 ∗ x3 + 57 ∗ x2 + 10 ∗ x + 87
149 in x 6072 x5 + 471 ∗ x4 + 274 ∗ x3 + 80 ∗ x2 + 124 ∗ x + 474
150 5369183 x5 + 1143762 ∗ x4 + 2949093 ∗ x3 + 491258 ∗ x2 + 5057777 ∗ x + 1189300

Table B.5: Curve Database V
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algorithm to superelliptic curves. Lecture Notes in Comput. Sci., 2248:480–494,

2001.

[GH00] Pierrick Gaudry and Robert Harley. Counting points on hyperelliptic curves

over finite fields. ANTS IV ; LNCS 1838, pages 297–312, 2000.

[Har00] R. Harley. adding.text, doubling.c, 2000.

85



86 BIBLIOGRAPHY

[Her75] I N Herstein. Topics in Algebra. Wiley: New York, 2nd edition edition, 1975.

[Her86] I N Herstein. Abstract Algebra. Macmillan, 1986.

[Kam91] W Kampkötter. Explizite Gleichungen für Jacobische Varietäten hyperelliptischer

Kurven. PhD thesis, Universitẗ Gesamthochschule Essen, 1991.
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