LEA
Fakultät für Informatik der Technischen Universität München
Lehrstuhl für Effiziente Algorithmen
Postadresse: 80290 München; Hausadresse: Arcisstr.21, 80333 München

Maximizing the Number of Connections in Optical Tree Networks

Thomas Erlebach and Klaus Jansen

Proceedings of the Ninth International Symposium on Algorithms and Computation (ISAAC'98),
LNCS 1533, Springer Verlag, 1998, pp. 179-188.

In optical networks with wavelength division multiplexing (WDM), multiple connections can share a link if they are transmitted on different wavelengths. We study the problem of satisfying a maximum number of connection requests in a directed tree network if only a limited number W of wavelengths are available. In optical networks without wavelength converters this is the maximum path coloring (MaxPC) problem, in networks with full wavelength conversion this is the maximum path packing (MaxPP) problem. MaxPC and MaxPP are shown to be polynomial-time solvable to optimality if the tree has height one or if both W and the degree of the tree are bounded by a constant. If either W or the degree of the tree is not bounded by a constant, MaxPC and MaxPP are proved NP-hard. Polynomial-time approximation algorithms with performance ratio 5/3+epsilon for arbitrarily small epsilon are presented for the case W=1, in which MaxPC and MaxPP are equivalent. For arbitrary W, a 2-approximation for MaxPP in arbitrary trees, a 1.58-approximation for MaxPC in trees of bounded degree, and a 2.22-approximation for MaxPC in arbitrary trees are obtained.